Читаем Восемь этюдов о бесконечности. Математическое приключение полностью

Например, 2– 1 = 15 – не простое число (15 = 3 × 5).

Те, кто еще не забыл уроки старших классов (или, скажем, все еще учится в школе), вероятно, знают, что число Мерсенна не относится к простым, если простым числом не является его степенной показатель. Дело в том, что в этом случае такое число всегда можно разложить на два сомножителя. Механизм, лежащий в основе этого правила, любезно вызвалось проиллюстрировать на собственном примере число 26 – 1:

26 – 1 = 2 2 × 3 – 1 = (2² – 1) (2 4 + 2 ² + 1) = 3 × 21[18].

Другими словами, если степенной показатель – составное число, то соответствующее число Мерсенна всегда можно разложить на множители, что доказывает, что и оно будет числом составным. Для его разложения есть общая формула:

2· m – 1 = (2n

 – 1) (1 + 2n + 2²n + … + 2(m – 1) · n).

Если эта формула не кажется вам особенно интересной, не беспокойтесь. Собственно говоря, сама формула не столь важна. Важен тот факт, что если в степенном показателе стоит не простое число, то и число Мерсенна с этим показателем не будет простым. Но если составной показатель гарантирует составное число Мерсенна, дальше, несомненно, естественно задать следующий вопрос: «Гарантирует ли простой показатель, что число Мерсенна будет простым?»

Попробуем проверить.

2² – 1, 2³ – 1, 2– 1 и 2– 1 – числа простые (соответственно 3, 7, 31 и 127). Пока что все хорошо. Сле- дующее простое число после 7 – это 11, но 211 

– 1 – это не простое число: 211 – 1 = 2047 = 23 × 89.

Как ни печально, наличие простого числа в степенном показателе не гарантирует, что соответствующее число Мерсенна тоже будет простым числом. Будь это так, мы бы располагали простым способом находить все новые и новые простые числа. Например, можно было бы взять то колоссальное простое число, о котором мы говорили несколькими строчками выше, использовать его в качестве степенного показателя 2, вычесть единицу и получить новое – и еще более колоссальное – простое число. В его показателе стояло бы число, содержащее более 20 миллионов цифр. Подумайте только, каким ужасающе огромным было бы это число – оно выходило бы за пределы воображения простых смертных. Простое ли это число на самом деле? Я этого не знаю и не думаю, что когда-нибудь узнаю.

Мерсенн исследовал эти числа, носящие теперь его имя, в работе, опубликованной в 1644 г. Она вышла под величественным заголовком «Физико-математические размышления» (Cogitata Physico-Mathematica). Мерсенн проверил все простые степенные показатели до 257 и заключил, что числа вида 2P – 1 должны быть простыми при P = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Правильный перечень немного отличается от этого и выглядит так: P = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127.

Судите сами, можно ли считать процент точных попаданий Мерсенна впечатляющим.

Числа Мерсенна и совершенные числа

Помните совершенные числа, с которыми мы познакомились в разделе, посвященном Пифагору? Если вы уже забыли про них, напомню, что совершенным называется число, сумма собственных делителей которого равна самому числу. Еще Евклид знал, что, если 2P – 1 – простое число, то его умножение на 2P – 1

всегда дает совершенное число. Разумеется, Евклид не называл такие числа числами Мерсенна. В его время не только еще не родился сам Мерсенн, но даже не познакомились родители прародителей его прародителей.

Приведем несколько примеров. 2³ – 1 – простое число (7); следовательно, (2³ – 1) × 2² = 28 – число совершенное. Аналогичным образом, 25 – 1 – простое число (31); следовательно, (25 – 1) × 24 = 496 – число совершенное. Воспользовавшись любезной помощью наибольшего из известных на сегодня простых чисел, мы теперь можем построить и самое большое из известных совершенных чисел: (277 232 917 – 1) × 277 232 916.

Я не советовал бы вам пытаться сосчитать это число и проверить справедливость этого утверждения. Могу вас заверить, что сумма всех делителей этого чудовищного числа действительно равна самому числу. Говоря словами великого немецкого философа Иммануила Канта, мне пришлось устранить знание, чтобы дать место вере.

Ну хорошо. Теперь настало время отвлечься от мировых рекордов и заняться разработкой некоторых из пресловутых умственных мускулов.

Головоломки для тех, кто изучал математику

1). Докажите, что, если 2P – 1 – простое число, то число (2P – 1) × 2P

 – 1 должно быть совершенным.

2). 28 – треугольное число.



Являются ли все совершенные четные числа треугольными?

Знаменитый швейцарский математик Леонард Эйлер (с которым мы вскоре познакомимся) доказал, что верно и обратное. Другими словами, любое четное совершенное число имеет форму (2P – 1) × 2P – 1, где P и 2P – 1 – простые числа. Попробуйте свои силы и докажите это утверждение – или же найдите доказательство Эйлера{14}.

Поиски чудотворной формулы

Перейти на страницу:

Все книги серии Научный интерес

Зачем мы спим
Зачем мы спим

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования.«Сон — это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела. Это лучшее оружие матушки-природы в противостоянии смерти. К сожалению, реальные доказательства, разъясняющие все опасности, которым подвергаются человек и общество в случае недосыпания, до сих пор не были в полной мере донесены до людей. Это самое вопиющее упущение в сегодняшних разговорах о здоровье. Исправить его как раз и призвана моя книга, и я очень надеюсь, что она превратится для читателя в увлекательное путешествие, полное открытий. Кроме того, книга нацелена на пересмотр оценки сна и изменение пренебрежительного отношения к нему».

Мэттью Уолкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Так полон или пуст? Почему все мы – неисправимые оптимисты
Так полон или пуст? Почему все мы – неисправимые оптимисты

Как мозг порождает надежду? Каким образом он побуждает нас двигаться вперед? Отличается ли мозг оптимиста от мозга пессимиста? Все мы склонны представлять будущее, в котором нас ждут профессиональный успех, прекрасные отношения с близкими, финансовая стабильность и крепкое здоровье. Один из самых выдающихся нейробиологов современности Тали Шарот раскрывает всю суть нашего стремления переоценивать шансы позитивных событий и недооценивать риск неприятностей.«В этой книге описывается самый большой обман, на который способен человеческий мозг, – склонность к оптимизму. Вы узнаете, когда эта предрасположенность полезна, а когда вредна, и получите доказательства, что умеренно оптимистичные иллюзии могут поддерживать внутреннее благополучие человека. Особое внимание я уделю специальной структуре мозга, которая позволяет необоснованному оптимизму рождаться и влиять на наше восприятие и поведение. Чтобы понять феномен склонности к оптимизму, нам в первую очередь необходимо проследить, как и почему мозг человека создает иллюзии реальности. Нужно, чтобы наконец лопнул огромный мыльный пузырь – представление, что мы видим мир таким, какой он есть». (Тали Шарот)

Тали Шарот

Психология и психотерапия
Зачем мы спим. Новая наука о сне и сновидениях
Зачем мы спим. Новая наука о сне и сновидениях

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования.«Сон – это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела. Это лучшее оружие матушки-природы в противостоянии смерти. К сожалению, реальные доказательства, разъясняющие все опасности, которым подвергаются человек и общество в случае недосыпания, до сих пор не были в полной мере донесены до людей. Это самое вопиющее упущение в сегодняшних разговорах о здоровье. Исправить его как раз и призвана моя книга, и я очень надеюсь, что она превратится для читателя в увлекательное путешествие, полное открытий. Кроме того, книга нацелена на пересмотр оценки сна и изменение пренебрежительного отношения к нему». (Мэттью Уолкер)

Мэттью Уолкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Изобретение науки. Новая история научной революции
Изобретение науки. Новая история научной революции

Книга Дэвида Вуттона – история великой научной революции, результатом которой стало рождение науки в современном смысле этого слова. Новая наука – не просто передовые открытия или методы, это новое понимание того, что такое знание. В XVI веке изменился не только подход к ней – все старые научные термины приобрели иное значение. Теперь мы все говорим на языке науки, сложившемся в эпоху интеллектуальных и культурных реформ, хронологические рамки которой автор определяет очень точно. У новой цивилизации были свои мученики (Джордано Бруно и Галилей), свои герои (Кеплер и Бойль), пропагандисты (Вольтер и Дидро) и скромные ремесленники (Гильберт и Гук). Она дала начало новому рационализму, покончившему с алхимией, астрологией и верой в колдовство. Дэвид Вуттон меняет наше представление о том, как происходили эти знаковые преобразования.«Наука – программа исследований, экспериментальный метод, взаимосвязь чистой науки и новой техники, язык отменяемого знания – появилась в период с 1572 по 1704 г. Последствия этого видны до сих пор – и, по всей вероятности, не исчезнут никогда. Но мы не только используем технологические преимущества науки: современное научное мышление стало важной частью нашей культуры, и теперь нам уже трудно представить мир, в котором люди не говорили о фактах, гипотезах и теориях, в котором знание не было основано на свидетельствах и где у природы не было законов. Научная революция стала почти невидимой просто потому, что она оказалась удивительно успешной». (Дэвид Вуттон)

Дэвид Вуттон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Гравитация
Гравитация

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская

Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы
Как захватить Вселенную. Подчини мир своим интересам. Практическое руководство для вдохновленных суперзлодеев
Как захватить Вселенную. Подчини мир своим интересам. Практическое руководство для вдохновленных суперзлодеев

Завоевание мира – это большая работа. У любого суперзлодея есть куча вопросов: как обустроить идеальное место для секретной базы? Как спланировать и реализовать ограбление века? Как управлять погодой и жить вечно? У автора бестселлера «Как изобрести все», популярного писателя Райана Норта есть ответы на все вопросы, волнующие начинающего злодея. В своем увлекательном пособии он подробно описывает диковинные схемы с использованием передовых технологий, дает забавные и иногда совершенно абсурдные советы по завоеванию мира, так что интересное времяпрепровождение вам обеспечено. В формате a4.pdf сохранен издательский макет.

Райан Норт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Теория «жизненного пространства»
Теория «жизненного пространства»

После Второй мировой войны труды известного немецкого геополитика Карла Хаусхофера запрещались, а сам он, доведенный до отчаяния, покончил жизнь самоубийством. Все это было связано с тем, что его теорию «жизненного пространства» («Lebensraum») использовал Адольф Гитлер для обоснования своей агрессивной политики в Европе и мире – в результате, Хаусхофер стал считаться чуть ли не одним из главных идеологов немецкого фашизма.Между тем, Хаусхофер никогда не призывал к войне, – напротив, его теория как раз была призвана установить прочный мир в Европе. Концепция К. Хаусхофера была направлена на создание единого континентального блока против Великобритании, в которой он видел основной источник смут и раздоров. В то же время Россия рассматривалась Хаусхофером как основной союзник Германии: вместе они должны были создать мощное евразийское объединение, целью которого было бы освоение всего континента с помощью российских транснациональных коммуникаций.Свои работы Карл Хаусхофер вначале писал под влиянием другого немецкого геополитика – Фридриха Ратцеля, но затем разошелся с ним во взглядах, в частности, отвергая выведенную Ратцелем модель «семи законов неизбежной экспансии». Основные положения теории Фридриха Ратцеля также представлены в данной книге.

Карл Хаусхофер , Фридрих Ратцель

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука