Читаем Восемь этюдов о бесконечности. Математическое приключение полностью

Много лет назад меня назначили преподавателем очень особой программы в рамках Математической школы при Тель-Авивском университете. Профессор Бено Арбель отвечал за выявление старшеклассников с исключительными способностями к математике, а я должен был понемногу учить их и готовить к исследовательской работе параллельно с их школьными занятиями. Основной целью этой программы было дать им возможность получить бакалаврскую или даже магистерскую степень еще до окончания старшей школы или вскоре после него. Я часто давал им решать задачи, которые выбирал из своей личной коллекции Международных математических олимпиад, потому что считаю, что лучше всего развивают именно трудные задачи. Одной из задач, которые я задавал на разминочном этапе, была следующая.

Задача

Выпишите 100 последовательных чисел, среди которых не будет ни одного простого числа.

К этому моменту вы, вероятно, уже знаете, что я собираюсь написать дальше. Если вы думаете, что я напишу «попытайтесь немного подумать, прежде чем читать дальше», вы совершенно правы.

Маленькая подсказка

Это непростое упражнение. Первым делом вы, несомненно, подумали, что такая сплошная последовательность чисел должна начинаться с весьма большого числа, – мы уже знаем, что среди малых значений не найдется ста последовательных чисел, среди которых не было бы ни одного простого.

Продолжайте думать.

Пока вы думаете, я воспользуюсь этой возможностью, чтобы познакомить вас (или возобновить ваше знакомство) с одним очень важным обозначением, которое упрощает запись и размышления. Разумеется, то, что я ввожу это обозначение именно сейчас, не случайно: оно поможет нам решить эту задачу. Речь идет о символе факториала, который обозначается восклицательным знаком (!). Запись n! обозначает в математике произведение всех чисел от 1 до n, то есть n! = 1 × 2 × 3 × 4 × 5 × … × (n

 – 1) × n.

Например, 5! = 1 × 2 × 3 × 4 × 5. Однажды один из моих учеников пропустил занятие, на котором я вводил факториалы. Когда он увидел обозначение 5! он назвал его «пять ух!». Сразу же очевидно, что 5! делится на все числа, входящие в произведение. Другими словами, n! делится на все числа от 1 до n.

Добросовестности ради отмечу, что 0! принимают равным 1, чтобы не вносить противоречий в основную формулу определения факториала: n! = (n – 1)! × n.

А теперь попробуем еще раз взяться за нашу задачу.

У вас появились какие-нибудь идеи? Если нет, читайте дальше.

Большая подсказка

Я надеюсь, что за то время, которое мы провели за разговором о факториалах, вы приблизились к решению. Нет никаких сомнений, что факториалы играют в нем какую-то роль. Но какую?

С какого числа следует начать? Может быть, с 100!? Нет, этот вариант не годится. Ведь следующее число, 100! + 1, вполне может оказаться простым, не так ли?

А вот если… Вы уже видите решение?

Огромная подсказка

Может быть, начать с 100! + 2? Такая идея кажется более привлекательной. Это число делится на 2, поскольку на 2 делятся и 100! и 2; следовательно, оно не может быть простым. Мы на верном пути.

Следующее число, 100! + 3, точно так же делится на 3, и, если продолжать в том же духе… 100! + 100 делится на 100. К сожалению, мы никак не можем немедленно установить, составное ли число 100! + 101.

Решение было так близко. Но увы, между 100! + 2 и 100! + 100 всего 99 чисел. Как жаль! Такая прекрасная идея отправляется в помойку.

Минуточку! В помойку? Ни в коем случае! Ее всего лишь нужно немножко подправить.

Решение

Мы можем начать свою последовательность чисел с 101! + 2 и закончить ее на 101! + 101. Тогда мы получим непрерывную последовательность из 100 идущих друг за другом чисел, и все они, вне всякого сомнения, – числа составные.

Очевидно, теперь мы можем найти последовательность чисел любой длины, в которой не будет ни одного простого числа. Например, чтобы получить набор из 1000 последовательных составных чисел, нужно просто начать эту последовательность с 1001! + 2. Из этого, разумеется, следует, что среди по-настоящему больших чисел простые числа будут встречаться все реже и реже{15}.

Еще о частоте простых чисел

По мере увеличения чисел средняя разность двух последовательных простых чисел тоже становится больше. Однако существует теорема, которая устанавливает верхний предел редкости появления простых чисел среди чисел натуральных. Она утверждает, что отношение



где Pi – значение i-го простого числа, приближается к нулю по мере приближения i к бесконечности.

Я переведу это утверждение с математического жаргона на язык понятный и нематематикам. Теорема эта означает, что отношение длины промежутка между простыми числами к самим простым числам становится меньше с увеличением i. Ниже приведен список значений начиная с i = 1. Чтобы было яснее, уточню, что в первой строке i равно 1; следовательно, Pi – это первое простое число, то есть 2, а Pi

+1 – второе простое число, то есть 3. Во второй строке i = 2, а простые числа – P2 = 3 и P3 = 5 и так далее.



Как вы видите, значение выражения



Перейти на страницу:

Все книги серии Научный интерес

Зачем мы спим
Зачем мы спим

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования.«Сон — это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела. Это лучшее оружие матушки-природы в противостоянии смерти. К сожалению, реальные доказательства, разъясняющие все опасности, которым подвергаются человек и общество в случае недосыпания, до сих пор не были в полной мере донесены до людей. Это самое вопиющее упущение в сегодняшних разговорах о здоровье. Исправить его как раз и призвана моя книга, и я очень надеюсь, что она превратится для читателя в увлекательное путешествие, полное открытий. Кроме того, книга нацелена на пересмотр оценки сна и изменение пренебрежительного отношения к нему».

Мэттью Уолкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Так полон или пуст? Почему все мы – неисправимые оптимисты
Так полон или пуст? Почему все мы – неисправимые оптимисты

Как мозг порождает надежду? Каким образом он побуждает нас двигаться вперед? Отличается ли мозг оптимиста от мозга пессимиста? Все мы склонны представлять будущее, в котором нас ждут профессиональный успех, прекрасные отношения с близкими, финансовая стабильность и крепкое здоровье. Один из самых выдающихся нейробиологов современности Тали Шарот раскрывает всю суть нашего стремления переоценивать шансы позитивных событий и недооценивать риск неприятностей.«В этой книге описывается самый большой обман, на который способен человеческий мозг, – склонность к оптимизму. Вы узнаете, когда эта предрасположенность полезна, а когда вредна, и получите доказательства, что умеренно оптимистичные иллюзии могут поддерживать внутреннее благополучие человека. Особое внимание я уделю специальной структуре мозга, которая позволяет необоснованному оптимизму рождаться и влиять на наше восприятие и поведение. Чтобы понять феномен склонности к оптимизму, нам в первую очередь необходимо проследить, как и почему мозг человека создает иллюзии реальности. Нужно, чтобы наконец лопнул огромный мыльный пузырь – представление, что мы видим мир таким, какой он есть». (Тали Шарот)

Тали Шарот

Психология и психотерапия
Зачем мы спим. Новая наука о сне и сновидениях
Зачем мы спим. Новая наука о сне и сновидениях

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования.«Сон – это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела. Это лучшее оружие матушки-природы в противостоянии смерти. К сожалению, реальные доказательства, разъясняющие все опасности, которым подвергаются человек и общество в случае недосыпания, до сих пор не были в полной мере донесены до людей. Это самое вопиющее упущение в сегодняшних разговорах о здоровье. Исправить его как раз и призвана моя книга, и я очень надеюсь, что она превратится для читателя в увлекательное путешествие, полное открытий. Кроме того, книга нацелена на пересмотр оценки сна и изменение пренебрежительного отношения к нему». (Мэттью Уолкер)

Мэттью Уолкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Изобретение науки. Новая история научной революции
Изобретение науки. Новая история научной революции

Книга Дэвида Вуттона – история великой научной революции, результатом которой стало рождение науки в современном смысле этого слова. Новая наука – не просто передовые открытия или методы, это новое понимание того, что такое знание. В XVI веке изменился не только подход к ней – все старые научные термины приобрели иное значение. Теперь мы все говорим на языке науки, сложившемся в эпоху интеллектуальных и культурных реформ, хронологические рамки которой автор определяет очень точно. У новой цивилизации были свои мученики (Джордано Бруно и Галилей), свои герои (Кеплер и Бойль), пропагандисты (Вольтер и Дидро) и скромные ремесленники (Гильберт и Гук). Она дала начало новому рационализму, покончившему с алхимией, астрологией и верой в колдовство. Дэвид Вуттон меняет наше представление о том, как происходили эти знаковые преобразования.«Наука – программа исследований, экспериментальный метод, взаимосвязь чистой науки и новой техники, язык отменяемого знания – появилась в период с 1572 по 1704 г. Последствия этого видны до сих пор – и, по всей вероятности, не исчезнут никогда. Но мы не только используем технологические преимущества науки: современное научное мышление стало важной частью нашей культуры, и теперь нам уже трудно представить мир, в котором люди не говорили о фактах, гипотезах и теориях, в котором знание не было основано на свидетельствах и где у природы не было законов. Научная революция стала почти невидимой просто потому, что она оказалась удивительно успешной». (Дэвид Вуттон)

Дэвид Вуттон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Гравитация
Гравитация

В книге рассказывается о развитии представлений о тяготении за всю историю науки. В описании современного состояния гравитационной теории основное внимание уделено общей теории относительности, но рассказано и о других теориях. Обсуждаются формирование и строение черных дыр, генерация и перспективы детектирования гравитационных волн, эволюция Вселенной, начиная с Большого взрыва и заканчивая современной эпохой и возможными сценариями будущего. Представлены варианты развития гравитационной науки, как теоретические, так и наблюдательные.

Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская

Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы
Как захватить Вселенную. Подчини мир своим интересам. Практическое руководство для вдохновленных суперзлодеев
Как захватить Вселенную. Подчини мир своим интересам. Практическое руководство для вдохновленных суперзлодеев

Завоевание мира – это большая работа. У любого суперзлодея есть куча вопросов: как обустроить идеальное место для секретной базы? Как спланировать и реализовать ограбление века? Как управлять погодой и жить вечно? У автора бестселлера «Как изобрести все», популярного писателя Райана Норта есть ответы на все вопросы, волнующие начинающего злодея. В своем увлекательном пособии он подробно описывает диковинные схемы с использованием передовых технологий, дает забавные и иногда совершенно абсурдные советы по завоеванию мира, так что интересное времяпрепровождение вам обеспечено. В формате a4.pdf сохранен издательский макет.

Райан Норт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Теория «жизненного пространства»
Теория «жизненного пространства»

После Второй мировой войны труды известного немецкого геополитика Карла Хаусхофера запрещались, а сам он, доведенный до отчаяния, покончил жизнь самоубийством. Все это было связано с тем, что его теорию «жизненного пространства» («Lebensraum») использовал Адольф Гитлер для обоснования своей агрессивной политики в Европе и мире – в результате, Хаусхофер стал считаться чуть ли не одним из главных идеологов немецкого фашизма.Между тем, Хаусхофер никогда не призывал к войне, – напротив, его теория как раз была призвана установить прочный мир в Европе. Концепция К. Хаусхофера была направлена на создание единого континентального блока против Великобритании, в которой он видел основной источник смут и раздоров. В то же время Россия рассматривалась Хаусхофером как основной союзник Германии: вместе они должны были создать мощное евразийское объединение, целью которого было бы освоение всего континента с помощью российских транснациональных коммуникаций.Свои работы Карл Хаусхофер вначале писал под влиянием другого немецкого геополитика – Фридриха Ратцеля, но затем разошелся с ним во взглядах, в частности, отвергая выведенную Ратцелем модель «семи законов неизбежной экспансии». Основные положения теории Фридриха Ратцеля также представлены в данной книге.

Карл Хаусхофер , Фридрих Ратцель

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Педагогика / Образование и наука