Это подводит нас к фигуре Софи Жермен, которая была связана с миром простых чисел и мириадой его задач.
Софи Жермен родилась в Париже в 1776 г. (а умерла в 1831-м). Саймон Сингх писал в 1997 г. в книге «Великая теорема Ферма»[23]
, что в возрасте 13 лет Софи прочитала, что Архимед отказался оставить свою математическую работу даже под угрозой смерти, в результате чего и погиб от руки римского воина. Эта история произвела на Софи сильное впечатление: она решила, что математика должна быть предметом чрезвычайно интересным, раз изучение ее тайн способно увлекать до такой степени. Несомненно, ее так же сильно поразило бы известие о том, что Бертран Рассел трижды передумывал покончить с собой, чтобы узнать еще немного о математике.Хотя Софи никогда официально не училась математике и не получила никакого ученого звания, она внесла значительный вклад в изучение математики, особенно в сферах дифференциальной геометрии и теории чисел. Одним из наиболее важных ее достижений в области теории чисел было уменьшение числа возможных решений уравнения Ферма. Софи Жермен победила в математическом конкурсе, организованном Французской академией наук, и стала первой женщиной, которой было позволено участвовать в семинарах академии. Ее именем названы улица и школа в Париже, не говоря уже о кратере на Венере: на этой планете есть кратер Жермен.
Простые числа Софи Жермен
Вернемся теперь к простым числам и открытым проблемам.
Простое число
Умудренный читатель, наверное, уже может догадаться, какую задачу до сих пор никому не удалось решить: бесконечно ли количество простых чисел Жермен? Да, на этот вопрос ответа нет. Однако можно придумать и несколько других интересных задач.
Подумайте, не торопитесь.
Рассмотрим последовательность чисел 2, 5, 11, 23, 47. Число 2 – простое число Жермен. Умножив его на 2 и прибавив единицу, мы получим простое число 5, которое также относится к простым числам Жермен и приводит нас к 11, которое также относится к простым числам Жермен и приводит нас к 23, которое также относится к простым числам Жермен и приводит нас к 47. Тут, однако, эта цепочка заканчивается, потому что 2 × 47 + 1 = 95, а это число составное. Таким образом, эта последовательность состоит из четырех чисел Жермен и еще одного простого числа.
Такого рода последовательности простых чисел Жермен называются цепочками Каннингема по имени британского военного и математика Алана Дж. Каннингема (1842–1928).
Вот еще несколько задач:
• Существуют ли более длинные цепочки? На самом деле да. Мой домашний компьютер совершенно обессилел, но сумел выдать следующий скромный пример цепочки из шести чисел: 89, 179, 359, 719, 1439, 2879.
• Существуют ли цепочки любой длины?
• Что будет, если заменить 2
• Имеет ли смысл исследовать выражения 4
Ха!
Загадка Гольдбаха, или Кто хочет стать миллионером?
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы