Сходство между геометрическим и арифметическим мышлением проявляется также и в том, что в арифметических исследованиях мы также мало, как и при геометрических рассмотрениях, прослеживаем до конца цепь логических рассуждений, вплоть до аксиом. Напротив, в особенности при первом подходе к проблеме, мы и в арифметике, совершенно так же как и в геометрии, сначала пользуемся некоторым мимолетным, бессознательным, не вполне отчетливым комбинированием, опирающимся на доверие к некоторому арифметическому чутью, к действенности арифметических знаков,— без чего мы не могли бы продвигаться в арифметике точно так же, как мы не можем продвигаться в геометрии, не опираясь на силы геометрического воображения. Образцом арифметической теории, оперирующей строгим образом с геометрическими понятиями и знаками, может служить работа Минковского «Геометрия чисел» (Лейпциг, 1896).
Сделаем еще несколько замечаний относительно трудностей, которые могут представлять математические проблемы, и о преодолении этих трудностей.
Если нам не удается найти решение математической проблемы, то часто причина этого заключается в том, что мы не овладели еще достаточно общей точкой зрения, с которой рассматриваемая проблема представляется лишь отдельным звеном в цепи родственных проблем. Отыскав эту точку зрения, мы часто не только делаем более доступной для исследования данную проблему, но и овладеваем методом, применимым и к родственным проблемам. Примерами могут служить введенное Коши в теорию определенного интеграла интегрирование по криволинейному пути и установление Куммером понятия идеала в теории чисел. Этот путь нахождения общих методов наиболее удобный и надежный, ибо, если шцут общие методы, не имея в виду какую-нибудь определенную задачу, то эти поиски, по большей части, напрасны.
При исследовании математических проблем специализация играет, как я полагаю, ещё более важную роль, чем обобщение. Возможно, что в большинстве случаев, когда мы напрасно ищем ответа на вопрос, причина нашей неудачи заключается в том, что еще не разрешены или не полностью решены более простые и легкие проблемы, чем данная. Тогда все дело заключается в том, чтобы найти эти более легкие проблемы и осуществить их решение наиболее совершенными средствами, при помощи понятий, поддающихся обобщению. Это правило является одним из самых мощных рычагов для преодоления математических трудностей, и мне кажется, что в большинстве случаев этот рычаг и приводят в действие, подчас бессознательно.
Вместе с тем бывает и так, что мы добиваемся ответа при недостаточных предпосылках, пли идя в неправильном направлении, и вследствие этого пе достигаем цели. Тогда возникает задача доказать неразрешимость данной проблемы при принятых предпосылках и выбранном направлении. Такие доказательства невозможности проводились еще старыми математиками, например, когда они обнаруживали, что отношение гипотенузы равнобедренного прямоугольного треугольника к его катету есть иррациональное число. В новейшей математике доказательства невозможности решений определенных проблем играют выдающуюся роль; там мы констатируем, что такие старые и трудные проблемы, как доказательство аксиомы о параллельных, как квадратура круга или решение уравнения пятой степени в радикалах, получили все же строгое, вполне удовлетворяющее нас решение, хотя и в другом направлении, чем то, которое сначала предполагалось.
Этот удивительный факт наряду с другими философскими основаниями создает у нас уверенность, которую разделяет, несомненно, каждый математик, но которую до сих пор никто не подтвердил доказательством,— уверенность в том, что каждая определенная математическая проблема непременно должна быть доступна строгому решению или в том смысле, что удается получить ответ на поставленный вопрос, или же в том смысле, что будет установлена невозможность ее решения и вместе с тем доказана неизбежность неудачи всех попыток ее решить. Представим себе какую-либо нерешенную проблему, скажем, вопрос об иррациональности константы