Теперь переходим к следующей цифре: 9. На что нужно умножить 4, чтобы получить 9? Нет целого числа, которое даст 9 после умножения на 4. Теперь спросим себя, какое число надо умножить на 4, чтобы получить число меньше 9? 2, умноженное на 4, дает 8, которое меньше 9 и одновременно ближе всех других чисел к 9. Записываем 2 под цифрой 9, а остаток 1 переносим в следующий разряд и указываем перед следующей за 9 цифрой в виде маленькой 1 вверху.
Теперь делим 12 на 4. Какое число после умножения на 4 дает 12? Ответом является 3 (3 х 4 = 12). Записываем 3 под цифрой 2. Следующая цифра меньше, чем 4, поэтому деление не может быть выполнено. Иными словами, 1 при делении на 4 дает 0 и в остатке 1.
или:
Остаток 1 может быть выражен через дробь: 1/4. Таким образом, ответом будет 12301
/4, или 1230,25.Использование кружков
Так же как нашу генеральную формулу можно с успехом применять для решения задач на умножение, ее можно использовать и для вычисления примеров на деление. Метод лучше всего работает в случае деления на 7, 8 и 9. Возьмем простой пример:
Метод работает так. Мы делим 56 на 8. Решение записываем либо способом, представленным выше, либо (если предпочтительнее) тем, который показан ниже. Пользуйтесь тем способом, который вам удобнее.
Я буду объяснять, пользуясь первым способом. Рисуем кружок под 8 (числом, на которое мы делим, то есть делителем) и спрашиваем себя, сколько не хватает до 10. Ответом является 2, поэтому вписываем 2 в кружок под 8. Прибавляем 2 к цифре в разряде десятков числа, которое мы делим (5 — это цифра из разряда десятков в числе 56), и получаем в ответе 7. Записываем 7 под цифрой 6 в числе 56. Рисуем кружок под 7. Сколько не хватает до 10? В данном случае — 3, поэтому вписываем 3 в кружок под 7. Теперь перемножаем числа в кружках.
2
х 3 = 6Вычтем 6 из цифры в разряде единиц в числе 56, чтобы получить остаток.
6
– 6 = 0Остаток нулевой.
Ответ: 7 без остатка.
Рассмотрим другой пример:
9 меньше 10 на 1, поэтому записываем 1 в кружке под делителем 9. Прибавим 1 к цифре десятков (6) и получим 7. Запишем 7 как целую часть ответа под цифрой 5. Рисуем кружок под 7. Сколько не хватает до 10? 3. Вписываем 3 в кружок под 7. Перемножим числа в кружках: 1 х 3 = 3. Отнимем 3 от цифры единиц (5) и получим остаток: 2. Ответ: 7 с остатком 2.
А вот еще один пример, который объясняет, что нам делать, когда целая часть оказывается слишком большой.
8 меньше 10 на 2, поэтому вписываем 2 в кружок под делителем 8. 2 плюс 4 равно 6. Записываем 6 над цифрой из разряда единиц. Теперь нарисуем еще один кружок над 6. Сколько не хватает до 10? Ответом является 4, поэтому вписываем 4 в верхний кружок. Чтобы узнать остаток, умножаем числа в кружках и вычитаем ответ из цифры из разряда единиц. Теперь решение выглядит таким образом:
Однако здесь мы сталкиваемся с тем, что вычесть 8 из цифры из разряда единиц (3) нельзя. Целая часть оказалась слишком большой. Чтобы исправить положение, уменьшим целую часть на 1, получив 5, и припишем маленькую 1 перед цифрой из разряда единиц (3), так что теперь оно превратилось в 13.
Умножаем числа в кружках: 2 х 5 = 10. Вычтем 10 из 13, в которое превратилась цифра из разряда единиц.
13
— 10 = 3 (остаток)5 r3
ОТВЕТПопробуйте решить следующие примеры самостоятельно:
а) 76: 9 = __; б) 76: 8 = __; в) 71: 8 = __; г) 62: 8 = __; д) 45: 7 = __; е) 57: 9 = __
Ответы:
a) 8 r4; б) 9 r4; в) 8 r7; г) 7 r6; д) 6 r3; е) 6 r3
Метод полезен тем, кто еще не освоил таблицы умножения и у кого возникают трудности с делением, или в тех случаях, когда нет уверенности в правильности ответа и хотелось бы его проверить. Как правило, чем лучше вы знаете таблицу умножения, тем легче вам делить на однозначное число.
Глава 12
Деление в столбик по множителям
Если вам надо разделить 368 долларов на 16 человек, то вы разделите 368 на 16, чтобы узнать, сколько должен получить каждый.
Если вы не знаете всех вариантов умножения на 16, есть простой способ решить эту задачу. 16 — это 2 на 8, а также 4 на 4. Простой способ деления на 16 состоит в том, чтобы использовать его множители. Можно разделить сначала на 4, а потом полученный результат разделить опять на 4. Это то же самое, что делить на 16, потому что 4 х 4 = 16.
Можно было бы записать решение задачи следующим образом:
Как и в случае с делением на однозначное число, решение можно записать и по-другому:
Деление на такие числа, как 14 и 16, достаточно легко выполнять в уме. Не представляет труда разделить число пополам, прежде чем делить на больший множитель. Если вам надо разделить 368 на 16 в уме, вы могли бы сказать про себя: «Половина от тридцати шести — восемнадцать, половина от восьми — четыре». Вы получили 184. Теперь 118 вы делите уже меньшее число на 8 (которое осталось от 16 после того, как мы разделили на 2).