История доказательств начинается в Древней Греции. До того времени математика служила людям в основном в практических целях: для расчетов, в строительстве и так далее. Существовали арифметические правила, да при работе с фигурами и пространством применялись проверенные опытом методы, но не более того. Понятие доказательства, появившееся около VII века до нашей эры, связано с деятельностью одного из первых известных представителей натурфилософии Фалеса Милетского. Фалес, чьи интересы охватывали почти все области знаний, в том числе философию, естественные науки, инженерное дело, историю и географию, доказал несколько простых начальных теорем в геометрии. Его соотечественник Пифагор, родившийся полстолетия спустя, известен всем гораздо лучше благодаря теореме, носящей его имя. Сам ли он нашел некое доказательство “теоремы Пифагора”, или это сделал кто-то из его последователей, сказать невозможно, поскольку никаких письменных свидетельств о таком доказательстве с тех времен не сохранилось. И вавилоняне, и другие народы знали о существовании правила, гласившего, что квадрат самой длинной стороны прямоугольного треугольника равен сумме квадратов двух других сторон, и применяли его в строительстве. Но кто первый это доказал и в какой форме, неизвестно. Согласно более поздним научным стандартам, то доказательство определенно должно было быть неформальным. Пифагорейцы также причастны к открытию иррациональных чисел – тех, что невозможно представить как отношение одного целого числа к другому. Корни этой идеи опять-таки проследить трудно, но, согласно мифу, один из членов пифагорейского культа, Гиппас, каким-то образом доказал, что квадратный корень из 2 невозможно выразить в виде дроби. Остальных пифагорейцев это открытие якобы привело в такой ужас, что они утопили Гиппаса, дабы скрыть от всех изъян в своей картине мира. Однако те немногочисленные древние источники, в которых упоминается история с утоплением, либо не называют Гиппаса по имени, либо утверждают, что наказание постигло его за другое богомерзкое преступление – он доказал, что возможно построить додекаэдр внутри сферы.
Математическое доказательство сделало огромный шаг вперед и вплотную приблизилось к той форме, в какой оно известно нам сегодня, благодаря трудам другого грека, Евклида, жившего в Александрии, в Египте, в начале III века до нашей эры. В своих “Началах” он заложил основы современной теории доказательств: некие исходные положения, принимаемые как самоочевидные, сочетаются с пошаговыми рассуждениями, когда каждый шаг, основывающийся на одном или нескольких исходных положениях, логически и неоспоримо вытекает из предыдущего.
“Начала” посвящены в основном геометрии и впервые излагают строгие доказательства многих из геометрических теорем, уже известных в то время грекам. Евклид начинает с перечисления пяти основных посылок, называемых теперь постулатами Евклида: например, “От всякой точки до всякой точки [можно] провести прямую линию” и “Ограниченную прямую [можно] непрерывно продолжать по прямой”[55]
. Эти постулаты, которые сегодня мы именовали бы аксиомами, принимаются настолько очевидно верными, что не требуют доказательства. И даже если бы кто-то взялся их доказать, для этого потребовались бы другие исходные положения. С чего-то ведь все равно надо начинать. Сформулировав постулаты, Евклид приступает затем к рассуждениям, строка за строкой с безупречной логикой выводя каждое новое положение из предыдущего, пока не получит полное доказательство той или иной теоремы. Эти теоремы он использует для доказательства уже следующих, и так далее – упорядоченно и последовательно, позволяя читателю с легкостью отслеживать и проверять ход своих рассуждений[56].