Их шестнадцать. Вы можете пересчитать браслеты на рисунке и убедиться, что я ничего не пропустил, но существует и более причудливый способ. Начиная сверху и двигаясь по часовой стрелке, мы получаем два варианта выбора для первого камня: это либо опал, либо жемчужина. Для каждого из этих двух вариантов есть два способа выбрать второй камень; следовательно, два камня мы можем выбрать четырьмя способами. Для каждого из этих четырех способов у нас есть два варианта выбрать третий камень, то есть всего получается восемь вариантов выбрать три камня. И наконец, для каждого из этих восьми вариантов последний камень может оказаться опалом или жемчужиной, так что в итоге получаем 2 × 2 × 2 × 2 = 16.
Ну, или можно просто посчитать! Однако преимущество нашего причудливого способа в том, что это рассуждение можно перенести на другие браслеты, например на изображенный выше браслет из семи камней. Число способов его изготовить 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128, и мой фломастер не настолько тонок, чтобы уместить все эти варианты на одной странице.
Однако я уже слышу, как вы говорите: а не нарисовано ли тут больше браслетов, чем надо? Посмотрите на первый и третий браслет с семью камнями: третий получится, если вы повернете первый на две позиции по часовой стрелке. Это действительно другой браслет или тот же, если смотреть на него под другим углом?
Пока будем придерживаться версии, что браслеты разные, если они выглядят на странице по-разному. Однако не забудьте об идее вращения. Мы могли бы назвать два браслета
Может, давайте красиво расположим все браслеты в витрине по конгруэнтности? Каждый браслет можно повернуть семью способами, поэтому группируем все 128 браслетов блоками по семь штук. Сколько будет блоков? Поделим 128 на 7 и получим 18,2857142…
Ура, снова ошибка! Что-то пошло не так, поскольку 128 не делится на 7.
Проблема возникла из-за некоторых браслетов, которые я не нарисовал. Например, вариант исключительно из опалов.
Семь вращений этого браслета дадут тот же самый браслет! Поэтому это не группа из семи предметов, а группа из одного предмета. Браслет исключительно из жемчужин тоже образует собственную группу.
А могут быть другие группы меньшего размера? Конечно. Вот эти два браслета из четырех камней образуют собственную группу.
Причина в том, что поочередное расположение опал – жемчужина повторяет себя при двух поворотах. Поэтому вы получите из первоначального браслета не четыре разных расположения, а только два.
Однако для браслета с семью камнями это не так. Включите воображение и представьте, что у вас есть браслет с семью камнями, который можно повернуть три раза и получить исходный. Тогда у вас группа из трех предметов: исходный браслет; браслет, повернутый один раз; браслет, повернутый дважды. Погодите, а если некоторые из них будут одинаковыми? Чтобы избавиться от этого неприятного варианта, давайте предположим, что три – это наименьшее число поворотов, которое возвращает браслет в первоначальное положение[252]
.Если тройной поворот возвращает нас к исходному браслету, то аналогичный возврат будет происходить после шести и девяти поворотов. Но теперь у нас возникает проблема, потому что семь поворотов браслета однозначно переводят его в первоначальное положение, так что девять поворотов – это то же самое, что и два поворота; однако два поворота не могут перевести браслет в исходное положение, поскольку мы только что предположили, что для этого нужно не менее трех поворотов.
И мы опять ощущаем острый привкус противоречия.
Возможно, начинать с числа 3 было неудачной идеей? Что, если в группе пять элементов, то есть пять – это наименьшее количество поворотов, восстанавливающих исходный браслет? Но тогда десять поворотов тоже его восстановят, а десять поворотов – то же самое, что и три. Снова противоречие?! А если два поворота? Это срабатывало для браслета с четырьмя камнями. Если два поворота восстанавливают исходный браслет, то это же сделают четыре, шесть и восемь поворотов, но восемь – ой-ой-ой – то же самое, что и один поворот.
У нас не было такой проблемы с четырьмя камнями. Вы дважды поворачиваете браслет и получаете исходный, поворачиваете четыре раза и тоже получаете исходный. Однако никакого противоречия тут нет, потому что четыре поворота вернут вас в начало. Все у вас выходит, поскольку четыре кратно двум. А проблемы с семью камнями возникают, потому что семь не делится на три, пять или на два. Семь вообще ни на что не делится, потому что семь – простое число.
Помните, что мы изначально говорили о простых числах?
Кстати, этот принцип может многое рассказать нам о цикадах. Каждые 17 лет мой родной штат Мэриленд буквально оккупирует большой восточный выводок: из-под земли появляются сотни миллиардов насекомых, покрывающих землю стрекочущим ковром. Какое-то время вы пытаетесь на них не наступать, но потом сдаетесь, потому что их слишком много.