Арыкан – турецкий профессор электрической и электронной инженерии. В 2008 году он работал над алгоритмом декодирования информации и понял, что используемые им техники можно также применить для достижения предела Шеннона. У него ушло два года на проработку деталей, но теперь эти техники используются в новейшем протоколе шифрования мобильной связи в цифровых сетях. Этот протокол пятого поколения (5G) называется стандартом передачи данных 5G NR (
Иметь математически доказуемую схему для коррекции ошибок неплохо, но вовсе не обязательно. Как выяснили первые пользователи турбокодов, если система работает, этого вполне достаточно. Но есть в теории информации такая область, в которой без математических доказательств никак не обойтись. Это криптография.
Криптографию – науку о шифровании и дешифровании секретных сообщений – можно, пожалуй, назвать самым недооцененным разделом математики. Наша свобода и наше благополучие зависят от нашей способности обеспечивать конфиденциальность связи. В конце концов, конфиденциальность имеет принципиальное значение как в работе правительства, так и при совершении покупок в интернете. Она лежит в основе безопасного мобильного банкинга, который позволяет фермерам в Руанде вести дела и зарабатывать на жизнь. Она играет ключевую роль при подготовке облав на торговцев кокаином, помогая колумбийским агентствам по борьбе с оборотом наркотиков проводить операции. Разоблачителям, которые пытаются привлечь внимание к проблеме коррупции, нужно шифровать свою переписку в мессенджерах. Шифрование – важнейший ресурс, который сродни кислороду информационной эпохи.
Полученный во время войны опыт быстро подсказал Шеннону, что математика теории информации может показывать, насколько хорошо – или плохо – будет работать система шифрования. В 1949 году он изложил свои идеи в статье “Теория связи в секретных системах”, которая представляла собой переработанную версию засекреченного документа, составленного им в 1945 году[232]
. В статье разбирается ситуация, когда “сообщение, подлежащее шифрованию, состоит из последовательных дискретных символов, каждый из которых выбран из некоего конечного множества. Эти символы могут быть буквами или словами некоторого языка, амплитудными уровнями «квантованной» речи или видеосигнала и так далее”. Шеннон отметил, что секреты, зашифрованные символами, – в отличие от тех, что скрываются с помощью невидимых чернил или шифруются с применением специальных технологий, например аппарата, способного в обратном порядке воспроизводить записанную речь, – можно проанализировать математически. Но главное – он продемонстрировал, что математический анализ может показать, есть ли вообще смысл взламывать шифр. Иными словами, он вывел математику криптоанализа и того, стоит ли игра с шифром свеч.Это невероятно важно, поскольку говорит вам, куда лучше всего направить свои силы. Если следовать указаниям Шеннона, можно изменить ход истории, как показывает Специальное донесение о шифре “Фиш”.
Оно было отправлено в военное министерство США в декабре 1944 года под грифом “совершенно секретно” и содержало свежие данные о том, как обстоят дела с получением доступа к зашифрованным сообщениям, которые немецкие радисты отправляли во время Второй мировой войны[233]
. Британские криптографы прозвали этот канал связи “Фиш”. Донесение составил Альберт Смолл из войск связи армии США, которого командировали в британский шифровальный центр в Блетчли-парке, чтобы помочь коллегам со взломом шифров. Он явно пребывал под впечатлением. В первом абзаце своего донесения он сообщает, что успехи наблюдаются каждый день. Он объяснил их “британским математическим гением, превосходными инженерными навыками и незыблемым здравым смыслом” и назвал “выдающимся вкладом в криптоаналитическую науку”.Но был ли этот вклад действительно выдающимся? Главная цель состояла в том, чтобы взломать шифр немецкой машины “Лоренц”, пришедшей на смену “Энигме” и устроенной еще сложнее. Теоретически машина “Лоренц” могла создавать совершенно случайные криптографические ключи. Их смешивали с сообщениями, напечатанными “открытым текстом”, с помощью принципов логики Джорджа Буля, развитых в магистерской диссертации Шеннона: клапанными комбинациями вентилей И, НЕ и ИЛИ, которые вместе формировали вентиль Исключающее ИЛИ.
Теоретически в результате должен был получаться шифр, который невозможно взломать. Союзникам оставалось лишь надеяться, что на практике шифр окажется не столь совершенным, как в теории. Так и случилось. Немецкие телеграфисты допускали ошибки при использовании машины “Лоренц”, а сами машины настраивались таким образом, что в их броне возникали другие бреши.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология