Читаем Искусство большего. Как математика создала цивилизацию полностью

Идея отказаться от слов в алгебре появилась лишь в XVI веке. Она пришла в голову французскому чиновнику Франсуа Виету. Получив юридическое образование, Виет на протяжении большей части жизни служил при французском королевском дворе, всячески помогая монархам. Он занимал административный пост в Бретани, был тайным советником короля Генриха III и занимался дешифровкой писем при Генрихе IV. Его звездный час, пожалуй, настал тогда, когда король Испании обвинил французский двор в использовании черной магии. Как иначе, жаловался он папе римскому, Франция могла заранее узнать о военных планах Испании? Но здесь, конечно, обошлось без колдовства. Виет просто оказался умнее испанских шифровальщиков и смог прочесть их переписку, перехваченную французскими военными.

Возможно, именно такая гибкость ума и позволила Виету разглядеть, что риторическая алгебра станет проще, если ввести в нее символы. В своей алгебре он согласными обозначал известные величины, а гласными – неизвестные. У него получалось примерно так:


A cubus + B quad. in A, æquetur B quad. in Z,


а сегодня мы написали бы:


А3 + B2A = B2Z


Его запись, признаться, тоже не была простой, но для начала и это было неплохо. Любопытно, что он использовал знак плюса (и знак минуса в других формулах), но знака равенства еще не ставил. Знак равенства в 1557 году ввел в обиход валлийский математик Роберт Рекорд, который предложил его в книге с забавным названием “Оселок остроумия, являющийся второй частью арифметики и содержащий извлечение корней, коссическую практику с правилом составления уравнений, а также иррациональные числа”.

Раз уж мы коснулись вопроса об алгебраической записи, стоит отметить, что по сей день не угасают ожесточенные споры о том, как буква x стала символом неизвестной величины. По мнению историка культуры Терри Мура, дело в том, что в алгебре аль-Хорезми “неопределенная величина” называлась “шен”[68]. В испанском языке нет буквы “ш”, и потому при переводе его трудов испанцы взяли самую близкую к ней букву x, которая дает испанский звук ch. Но в других источниках утверждается, что x нам подарил Рене Декарт, который применил буквы с разных концов алфавита в своей книге “Геометрия”, опубликованной в 1637 году[69]. Он обозначил известные величины буквами a, b и c, а неизвестные – буквами x, y и z.

Если вас пугает алгебра со всеми ее загадочными символами, представьте, что перед вами способ представить геометрические фигуры в текстовой форме.

Продумывая структуру своей книги, я провел искусственную черту между алгеброй и геометрией. Хотя обычно мы изучаем эти науки по отдельности – в основном потому, что так проще составлять учебный план, – алгебра естественным образом вытекает из геометрии. Это, в сущности, и есть геометрия, которая отказывается от картинок, тем самым позволяя математике освободиться от оков и расцвести. Чтобы понять, как это происходит, давайте вернемся – в очередной раз – к древней практике налогообложения.

Как мы видели в главе о геометрии, налоги часто рассчитывались в зависимости от площади полей – вавилонское слово eqlum, “площадь”, изначально и значило “поле”[70]. Неудивительно, что вавилонским чиновникам приходилось решать задачи наподобие вот этой, записанной на глиняной табличке YBC 6967 из Вавилонской коллекции Йельского университета:


Площадь прямоугольника равна 60, а его длина больше ширины на 7. Какова его ширина?


Попробуем решить эту задачу. Если взять ширину за x, то длина – это x + 7. Площадь прямоугольника равна произведению его длины и ширины, а значит, задается следующим равенством:


A = x (x + 7)


Скобки здесь показывают, что каждое из слагаемых внутри них нужно умножить на величину, стоящую снаружи, и тогда получится:


A = x2 + 7x


Вавилоняне решали такие уравнения, производя последовательность действий, показывающих тесную связь между алгеброй и геометрией. Этот процесс называется “достраиванием квадрата”.


Вавилонский метод “достраивания квадрата” для решения квадратных уравнений


Чтобы решить уравнение вида x

2 + bx, сначала нужно было зарисовать его в виде геометрических фигур. x2 – это квадрат со стороной x. bx – прямоугольник с длиной x и шириной b. Поделите этот прямоугольник надвое по длинной стороне и переместите одну половину в нижнюю часть квадрата, и у вас почти получится квадрат побольше. Чтобы достроить его, нужно просто добавить маленький квадратик со стороной b/2. Площадь этого квадратика – (b/2)2. Получается, что изначальное уравнение эквивалентно равенству (x + b/2)2 – (b/2)2.

Сталкиваясь с уравнением вида


x

2 + bx = c


вавилоняне подставляли в него результат достраивания квадрата и получали:



Далее они работали с этим равенством и приводили его к формуле (хотя и не записывали формулу в современном представлении):



Ответ: ширина равняется 5, а длина – 12. Но приглядитесь – разве эта формула вам не знакома? Если я чуть изменю изначальное равенство, чтобы получилось


ax2 + bx + c = 0,


то вы сможете решить его по формуле, усвоенной в школе, – формуле для решения квадратного уравнения:



Перейти на страницу:

Похожие книги

Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии / Культурология
Антирак груди
Антирак груди

Рак груди – непонятная и пугающая тема. Суровые факты шокируют: основная причина смерти женщин от 25 до 75 лет – различные формы рака, и рак молочной железы – один из самых смертоносных. Это современное бедствие уже приобрело характер эпидемии. Но книга «Антирак груди» написана не для того, чтобы вы боялись. Напротив, это история о надежде.Пройдя путь от постановки страшного диагноза к полному выздоровлению, профессор Плант на собственном опыте познала все этапы онкологического лечения, изучила глубинные причины возникновения рака груди и составила программу преодоления и профилактики этого страшного заболевания. Благодаря десяти факторам питания и десяти факторам образа жизни от Джейн Плант ваша жизнь действительно будет в ваших руках.Книга также издавалась под названием «Ваша жизнь в ваших руках. Как понять, победить и предотвратить рак груди и яичников».

Джейн Плант

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература