Точки образуют траекторию, которая позволяет наглядно представить непрерывное поведение динамической системы в течение длительного периода времени. Повторяющаяся «петля» соответствует системе, которая всегда воспроизводит одно и то же свое состояние. Если повторяющееся поведение устойчиво, как у часов с маятником, система при незначительных помехах возвращается к прежней орбите движения. В фазовом пространстве траектории вблизи орбиты как бы вовлекаются в нее, а сама орбита является аттрактором. Аттрактор может являть собой одну-единственную точку (
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, похожую на муху, летающую по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто представить, что эта часть комнаты находится вне зоны досягаемости и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мухи образует петлю и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. При взгляде на фазовую картину ученый мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух измерений изображения в фазовом пространстве могли многим удивить. Кое-какие из них можно было построить в том числе на мониторах настольных компьютеров, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать на видеопленку, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, – «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов[202]
. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную степень свободы, и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, задействовали одно измерение. Они позволяли обойтись единственным числом – значением температуры или численности популяции, – которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Урезанная система Лоренца, описывавшая конвекцию в жидкостях, имела три фазовые координаты, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.Даже топологу с самой развитой фантазией нелегко представить себе пространства, обладающие четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с этим беспощадным и необоримым чудищем, образ которого Ландау использовал для того, чтобы выразить суть турбулентности, и которому присущи бесконечное число колебаний, бесконечное число степеней свободы, бесконечное количество измерений?