Рюэль и Такенс задались вопросом, обладает ли какой-либо иной тип аттрактора подходящим набором характеристик: устойчивостью, малым числом измерений, непериодичностью. Устойчивость означала достижение конечного состояния системы вопреки всем помехам в полном шумов мире. Малое число фазовых координат предполагало, что орбита в фазовом пространстве должна быть ограничена либо прямоугольником на плоскости, либо параллелепипедом в трехмерном пространстве и обладать лишь несколькими степенями свободы. Непериодичность подразумевала отсутствие повторений – ничего общего с монотонным тиканьем старых дедушкиных часов. С геометрической точки зрения вопрос казался чистой воды головоломкой. Какой вид должна иметь орбита, изображаемая в ограниченном пространстве, чтобы она никогда не повторяла и не пересекала саму себя? Ведь система, вернувшаяся в свое прежнее состояние, согласно принятой модели, должна повторять уже пройденный путь снова и снова. Чтобы воспроизвести каждый ритм, орбита должна являть собой бесконечно длинную линию на ограниченной площади. Другими словами, она должна стать фрактальной – хотя этого слова еще не существовало.
Следуя математической логике, Рюэль и Такенс провозгласили, что описанный феномен должен существовать. Хотя они никогда не видели и не изображали его, одного заявления оказалось довольно. Впоследствии, выступая с речью на пленарном заседании Международного конгресса математиков в Варшаве и пользуясь преимуществом высказать суждение задним числом, Рюэль заявил: «Научное сообщество весьма прохладно отнеслось к нашему предположению. В частности, упоминание о том, что непрерывный спектр будет ассоциироваться с незначительным числом „степеней свободы“, многие физики посчитали просто ересью»[206]
. Но были и другие – горсточка, если уж быть точными, – которые почувствовали всю значимость вышедшей в 1971 году работы и продолжили развивать идеи, намеченные в ней.На самом деле к 1971году в научной литературе уже имелся один небольшой набросок того невообразимого чудовища, которое пытались оживить Рюэль и Такенс. Эдвард Лоренц сделал его приложением к своей статье о детерминистском хаосе, вышедшей в 1963 году[207]
. Этот образ представлял собой конструкцию из двух кривых – одна внутри другой – справа и пяти кривых слева. Лишь для схематичного изображения этих семи «петель» потребовалось пятьсот математических операций, выполненных компьютером. Точка, двигаясь вдоль указанной траектории в фазовом пространстве, иллюстрировала медленное хаотичное вращение потоков жидкости, что описывалось тремя уравнениями Лоренца для явления конвекции. Поскольку система характеризовалась тремя независимыми переменными, данный аттрактор лежал в трехмерном фазовом пространстве. И хотя изображен был лишь его фрагмент, Лоренц смог увидеть гораздо больше: нечто вроде двойной спирали, крыльев бабочки, сотканных с удивительным мастерством. Когда увеличение количества теплоты в системе Лоренца вызывало движение жидкости в одном направлении, точка находилась в правом «крыле», при остановке течения и его повороте точка перемещалась на другую сторону.Первый странный аттрактор. В 1963 году Эдвард Лоренц смог вычислить только первые несколько петель аттрактора для своей простой системы уравнений. Однако он понял, что переплетение двух спиралеобразных «крыльев» должно иметь необычную структуру на бесконечно малых масштабах.
Аттрактор был устойчивым, непериодическим и имел малое число измерений. Он никогда не пересекал сам себя. Если бы подобное случилось и он возвратился бы в точку, которую уже миновал, движение в дальнейшем повторялось бы, образуя периодическую петлю. Но такого не происходило. В этом-то и заключалась странная прелесть аттрактора: являвшиеся взору петли и спирали казались бесконечно глубокими, никогда до конца не соединявшимися и не пересекавшимися. Тем не менее они оставались внутри участка пространства, ограниченного рамками параллелепипеда. Как такое стало возможным? Как может бесконечное множество траекторий лежать в ограниченном пространстве?