Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

До сих пор все построения были в какой-то мере шаткими. Они состояли из набора предположений, достигших своего полного выражения в формуле (1.11), каждое из которых уводило нас все дальше от реального мира (пионов, протонов и т.д.) в воображаемую область (кварков и глюонов) с набором предсказаний, едва ли численно превосходящим количество предположений. Однако ситуация радикально изменилась в начале семидесятых годов. В это время т’Хофт (неопубликованная работа), Политцер [218] и независимо от них Гросс и Вильчек [160 — 162] доказали, что в теориях с лагранжианом типа (1.11) эффективная константа связи на малых расстояниях стремится к нулю (асимптотическая свобода), а на больших растет. Таким образом, они одновременно объяснили успехи алгебры токов и партонной модели, а также доказали возможность возникновения конфайнмента. Кроме того, оказалось возможным вычислить поправки к расчетам, проведенным в приближении свободных кварков. Результаты, учитывающие такие поправки, систематически согласуются с экспериментальными данными в пределах точности вычислений (и самих экспериментальных данных). В общем весьма вероятно, что КХД адекватно описывает процессы, происходящие при сильных взаимодействиях частиц 2a).

2a Скептическая точка зрения содержится в работе [220].

Другим важным, свойством КХД, которое, пожалуй, недостаточно подчеркивается при изложении хромодинамики, является локальный характер КХД как теории поля, что приводит (по крайней мере, если конфайнмент действительно имеет место) к локальным наблюдаемым. Точнее картина такова. Поля, являющиеся точными решениями уравнений движения, соответствующих лагранжиану (1.11), определены в гильбертовом пространстве ΧQCD, состоящем из кварковых и глюонных векторов состояний, и строятся, например, по теории возмущений. Кварки и глюоны представлены локальными полями q(x) и В(х). Если гипотеза конфайнмента справедлива, то существует подпространство ΧPh, которое содержит физические состояния. Иными словами, если точно решить уравнения теории, то сохранятся только синглетные по цвету операторы. К ним относятся токи типа

∑qi γμ (1 ± γ5) q'i ,

и другие составные операторы: операторы для π-мезона или для протона

∑qi γ5di , ∑εijku

iujdk

и т.д. Дело в том, что эти операторы локальны, хотя они и составные; если модель верна, то наблюдаемые операторы в физическом гильбертовом пространстве ΧPh тоже локальны. Это существенно при выводе 2b) всех стандартных результатов "старомодной" адронной физики — дисперсионных соотношений при фиксированном t, ограничений типа фруассаровского предела и т.д., которые, будучи проверены экспериментально, привели к впечатляющим успехам.

2b См. работы [44, 111], в которых можно найти ссылки на соответствующую литературу.

Отметим еще одно преимущество КХД хотя оно и носит более умозрительный характер, чем упомянутые выше. КХД допускает естественное обобщение до теории Великого объединения. Поскольку SUc(3) — более широкая группа, чем стандартная электрослабая группа SU(2) х U(l), при некотором масштабе энергий все константы связи могут стать равными по величине. Пока этот масштаб энергий (1014 ГэВ) намного выше экспериментальных возможностей, и предсказания моделей Великого объединения не противоречат существующим экспериментальным результатам.

§ 2. Теория возмущений, S-матрица и функции Грина; теорема Вика

В этом параграфе очень кратко рассматриваются основные вопросы релятивистской теории поля. Конечно, изложить теорию поля сколько-нибудь детально в столь малом объеме невозможно. Поэтому настоящий параграф служит главным образом для того, чтобы ввести необходимые обозначения и наметить в общих чертах круг вопросов, знакомство с которыми необходимо для понимания материала, излагаемого ниже. Подробное изложение теории квантованных полей содержится, например, в книгах [40, 45, 172].

Теория поля определяется заданием соответствующего лагранжиана. Если Φi - поля, фигурирующие в теории, то лагранжиан является функцией от полей Φi и их пространственно-временных производных ∂Φi. Лагранжиан ℒ (в действительности ℒ представляет собой плотность лагранжевой функции) принято разбивать на два слагаемых ℒ0 и ℒint; при этом член ℒ0 описывает динамику свободных полей (он получается из лагранжиана ℒ, если принять все взаимодействия равными нулю), а член ℒint

который определяется как разность ℒint = ℒ - ℒ0 , описывает взаимодействия между полями. Например, в квантовой хромодинамике полный лагранжиан выражается в виде (1.11), а лагранжиан свободных полей записывается в следующем виде:


0

=


q

(x)(i

 -

m

q

)q(x)


-

¼


(∂

μ

B

ν

(x) - ∂

ν

B

μ

(x))


q

a


 

q

 

a


×

(∂

μ

B

(x) - ∂

ν

B

(x)).


Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки