Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

Кроме основных, или элементарных, полей Φi, фигурирующих в теории (в случае КХД это поля q для кварков и B для глюонов), часто встречаются составные операторы (как правило, это локальные комбинации полей Φi), т.е. комбинации» содержащие произведения конечного числа полей Φi и их производных, взятых в одной и той же точке x. Например, в КХД используются операторы токов q(x)γμq'(x). Конечно, и сам лагранжиан ℒ(х) является составным локальным оператором.

Из локальных полей или из локальных операторов (элементарных или составных) можно образовать новые локальные операторы. Самый простой способ заключается в обычном перемножении операторов. Но имеются два других типа произведений, которые будут неоднократно рассматриваться в дальнейшем, — виковское и хронологическое произведения локальных операторов. Для свободных полей виковское, или нормальное, произведение определяется следующим образом. Разложим поля Φi по операторам рождения и уничтожения. Результат имеет вид


Φ

i

(x)

 =

C

(n)

(x)a

n

+

C

(n)

(x)

a

+

 ,


i

i

n


n

n


где операторы a и a могут совпадать или не совпадать. Например, если поля Φ отождествить с кварковыми полями q , то их разложение имеет вид


q(x)

 =

1


d

p

{

e

-ip⋅x

u(p,σ)a(p,σ) + e

ip⋅x

v(p,σ)

a

+

(p,σ)

}

,


(2π)

3/2

2p

0


σ


где u и v - обычные дираковские спиноры, а a+ (a+) - операторы рождения частиц (античастиц). Виковское произведение : Φ1(x12(x2): получается перестановкой всех операторов рождения левее всех операторов уничтожения. При перестановках учитываются коммутационные (антикоммутационные) соотношения между бозонными (фермионными) операторами. В результате получается


1

(x

1

2

(x

2

):


 

n,n'


C

(n)

1

(x

1

)

C

(n)

2

(x

2

)a

n

a

n'

+

C

(n)

1

(x

1

)

C

(n)

2

(x

2

)

a

+

n

a

+

n'


+


C

(n)

1

(x

1

)C

(n')

2

(x

2

)

a

+

n

a

n'

+

(-1)

δ

C

(n)

1

(x

1

)

C

(n')

2

(x

2

)

a

+

n'

a

n

,


Здесь δ = 1 для фермионов и δ = 0 для бозонов.

Обобщение определения виковского произведения на большее число сомножителей :Φ1(x1) … Φn(xn): или на виковское произведение от других виковских произведений типа : ( :Φ1(x12(x2): ) ( :Φ3(x34(x4): ) : производится непосредственно. Рецепт состоит в следующем: поля разлагают по операторам рождения и уничтожения и, учитывая коммутационные соотношения, переписывают выражение так, чтобы операторы рождения стояли левее операторов уничтожения.

Нетрудно проверить, что виковское произведение локальных операторов, взятых в одной и той же точке, тоже локально3), т. е. если операторы O1,…,On локальны, то и виковское произведение этих операторов :O1(x)…On(x): локально.

3 Оператор Oα(x) называется локальным, если при преобразованиях Пуанкаре он преобразуется по формуле U(a,Λ)Oα(x)U-1(a,Λ) = ∑ Pαα⋅(Λ)Oα'(Λx+a) и коммутирует сам с собой в разных пространственных точках.

Еще одним важным свойством виковского произведения является его регулярность. Иными словами, для любых состояний a и b матричные элементы от виковского произведения ⟨а∣ :O1(x1)…On(xn): ∣b⟩ являются регулярными функциями переменных (x1),…,(xn).

Хронологическое произведение, или Т-произведение, локальных (элементарных или составных) операторов O1(x1)…On(xn) определяется следующим образом:

TO1(x1)…On(xn) ≡ T{ O1(x1)…On(xn) } = (-1)δ

Oi1(xi1) … Oin(xin)

В правой части этого выражения операторы расположены в такой последовательности, что их временные аргументы удовлетворяют условию x0i1 ≥ x0i2 ≥ … ≥ x0in , а параметр δ равен числу перестановок индексов, соответствующих фермионным операторам, которые необходимо выполнить,чтобы из исходной последовательности 1,…,n составить последовательность i1,…,in. Иначе говоря, хронологическое произведение TO1(x1)…On(xn) можно получить, переставляя операторы так, чтобы их временные аргументы образовывали невозрастающую последовательность, учитывая при этом коммутационные (антикоммутационные) соотношения для бозонных (фермионных) операторов. Например, для двух сомножителей q1(x) и q2(y) получаем

Tq1(x)q2(y) = θ(x0 - y0)q1(x)q2(y) - θ(y0 - x0)q2(y)q1(x)

или

Tq1(x)B2(y) = θ(x0 - y0)q1(x)B2(y) + θ(y0 - x0)B2(y)q1(x)

Следует помнить, что бозонные и фермионные операторы всегда коммутируют и хронологическое произведение операторов релятивистски инвариантно.

S-матрица представляет собой оператор, переводящий векторы, отвечающие свободным состояниям системы в момент времени t=-∞ в векторы, отвечающие свободным состояниям этой системы в момент времени t=+∞. S-матрица может быть получена из лагранжиана взаимодействия при помощи формулы Мэттьюза


S

 =

T exp i

d

4

xℒ


0

int


(x).


(2.1а)


Перейти на страницу:

Похожие книги

Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки