Читаем Малыши и математика. Домашний кружок для дошкольников полностью

Вообще у меня такое впечатление, что если бы я с ним занимался, как в школе, каждый день по одному уроку, то мы могли бы за следующий год пройти программу класса примерно до 8-го. Но я, естественно, этого делать не буду. Мне кажется, что такие занятия допустимы только лет с 11–12, не раньше.

[Здесь надо бы дать небольшое пояснение, что я имею в виду, говоря о таких занятиях. Я имею в виду не их систематичность, а их «инструктивный» характер. Как если бы я,

например, сам рассказал ему, что такое общий знаменатель и как складывать и вычитать дроби. Это заняло бы не более получаса, и он бы уже давно всё умел. Но вместо этого я пытаюсь добиться от него, чтобы он сам всё это придумал, и в результате дело растянулось уже почти на год. Мне кажется, что инструктивное обучение вполне допустимо (и даже необходимо — иначе далеко не продвинешься), но только с определённого возраста — когда сформируется то, что Пиаже называет «формально-операциональными структурами».]

10 июня 1984 года. Четвёрка за год. Сегодня получили Димин табель успеваемости. По математике у него за год всё же четвёрка. Это единственная из его оценок, которая кажется мне несправедливой. Самое обидное то, что учительница даже не подозревает, как далеко он ушёл вперёд по сравнению со школьными требованиями. Откуда ей это знать?

17 июня 1984 года. Вступительная задача на физфак. Сегодня Дима решил вступительную задачу из письменного экзамена на физфак МГУ за 1983 год (вариант № 1, задача № 4 — т. е. из разряда задач «средней трудности»[44]

, промежуточных между лёгкими и трудными). Вот формулировка задачи:

Если некоторое двузначное число поделить на сумму его цифр, то в частном получится 7 и в остатке 6. Если то же число поделить на произведение его цифр, то в частном получится 3 и в остатке 11. Найти это двузначное число.

Произошло это вот как. Мой абитуриент Андрей П., которому я даю уроки, решить эту задачу не смог. На уроке в течение получаса я с огромным трудом втолковывал ему решение. Видимо, только моё раздражение его тупостью натолкнуло меня на мысль дать эту задачу Диме. Чтобы избежать зазнайства с Диминой стороны, я не стал совать ему книжку со вступительными вариантами, а выписал задачу на отдельном листке. Первое, что он сказал, выслушав условие:

— Значит, делили не менее, чем на 12, да?

(То есть то, что было главным камнем преткновения для моего абитуриента, было ему понятно само собой.) Затем задумался. Должен сказать, что обстановка в доме не способствовала сосредоточенности. Сначала мы ужинали, потом он сидел на диване и думал, а к нему приставала Женя, потом Алла заставила его позаниматься английским, потом он снова отгонял Женю и т. п. Расскажу, как я сам решал задачу и как рассказывал её абитуриенту. Из первого условия получаем, что наше число имеет вид 7k + 6, причём k >= 7 (иначе остаток от деления на k

не может равняться шести). Перебираем все такие двузначные числа: 55, 62, 69, 76, 83, 90, 97. Для этих чисел проверяем второе условие: оно выполняется только для числа 83. Ответ: 83.

Я привёл здесь своё собственное решение потому, что в нём содержится одна тонкая ошибка. Меня совершенно потрясло то, что Дима этой ошибки не допустил (так я и узнал о своей ошибке — из его решения!). На самом деле искомое число должно не просто иметь вид 7k + 6, но ещё k должно совпасть с суммой его цифр. Я этого совпадения не проверял. В действительности первому условию удовлетворяют не все те числа, что выписаны выше, а только два из них: 62 и 83.

Через какое-то время после ужина Дима сказал:

— К первому предложению я ответ нашёл, но он не подходит ко второму предложению.

— А какое число?

— 62. Но если его поделить на 12, то получается не 3 и в остатке 11, а 5 и в остатке 2.

— А как ты нашёл это число?

— Умножил 7 на 8 и прибавил 6.

(Опять то, чего я никак не мог объяснить абитуриенту.)

— А почему сразу на 8, а не на 7?

— На 7 я тоже умножал, тогда получается 55. Но у него сумма цифр не 7, а 10.

— Гм-м… Да, в самом деле; действительно… Хм-м…

Фраза Димы о том, что он уже «нашёл ответ» к первому условию, показывает, что он, как всегда, не заботится о том, чтобы найти все решения задачи (либо доказать единственность), а удовлетворяется первым найденным решением, считая его ответом. Поэтому в этот момент я придал ему некоторый толчок, без которого он, может быть, сам бы задачу до конца и не решил, застряв на числе 62. (А может и решил бы.) Я сказал только одну фразу:

— Ты на правильном пути.

Но до него вполне дошёл смысл сказанного: ты на пути, т. е. нужно проверять дальше.

Через некоторое время он прибежал ко мне и сказал, что получилось ещё 83, но только при делении получается 3 (это правильно), а в остатке 5. Я сказал:

— Проверь деление ещё раз.

Он проверил:

— Да, правильно, одиннадцать.

Перейти на страницу:

Похожие книги

Рассказы о металлах
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов.Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их "планах на будущее" рассказывает эта книга.Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.Иллюстрации Алексея Владимировича Колли.

Сергей Иосифович Венецкий

Детская образовательная литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Металлургия / Научпоп / Книги Для Детей
Томек в стране кенгуру
Томек в стране кенгуру

Альфред Шклярский принадлежит к числу популярнейших польских, писателей, пишущих для молодежи. Польскому читателю особенно полюбился, цикл приключенческих романов Шклярского. Цикл объединен образами главных героев, путешествующих по разным экзотическим странам земного шара. Несмотря на общность героев, каждый роман представляет из себя отдельную книгу, содержание которой определено путешествиями и приключениями Томека Вильмовского, юного героя романов, и его взрослых товарищей.Кроме достоинств, присущих вообще книгам приключенческого характера, романы Шклярского отличаются большими ценностями воспитательного и познавательного порядка. Фабула романов построена с учетом новейших научных достижений педагогики. Романы учат молодых читателей самостоятельности, воспитывают у них твердость характера и благородство.Первое и второе издания серии приключений Томека Вильмовского разошлись очень быстро и пользуются большим успехом у молодых советских читателей, доказательством чему служат письма полученные издательством со всех концов Советского Союза. Мы надеемся, что и третье издание будет встречено с такой же симпатией, поэтому с удовольствием отдаем эту серию в руки молодых друзей.

Альфред Шклярский

Приключения / Детская образовательная литература / Путешествия и география / Детские приключения / Книги Для Детей