Вообще-то у меня было несколько собственных вопросов. В рамках летней исследовательской программы мы с сокурсниками получили возможность подать заявку на телескопное время для наблюдений на VLA. Нам выделили несколько часов, и я хотела их использовать для изучения нескольких красных сверхгигантов. Я знала, что эти звезды могут сбрасывать массу вещества из своих внешних слоев, и это вещество будет висеть вокруг звезды пыльной оболочкой, остывая и рассеиваясь. По-видимому, в пылевой оболочке иногда мог образоваться так называемый космический мазер, который индуцировал и усиливал радиоизлучение некоторых молекул в этой пыли на очень специфических длинах волн, но подробности физических процессов, лежащие в основе этого явления, все еще оставались загадкой. Мне было любопытно, сможем ли мы объяснить, как образуются мазеры, и может ли это рассказать нам о том, как умирают звезды, и теперь, получив доступ к радиотелескопу, я могла наконец сама наблюдать эти звезды. У нас было впереди целое лето, чтобы узнать о том, как работают радиотелескопы, но я хотела иметь фору. Кроме того, я уже работала с оптическими телескопами на стажировке у Фила Мэсси и посещала занятия Джима Эллиота по наблюдению. Не могли же радиотелескопы так сильно отличаться от оптических?
Один из местных астрономов согласился поболтать со мной, и я для затравки задала пару вопросов о том, над чем они сейчас работают.
— Что вы сейчас наблюдаете?
— Ну, прямо сейчас мы работаем над калибратором фазы для воды вблизи протозвезды.
Хм. Я слегка наклонила голову и покивала, как будто поняла, о чем идет речь.
— Ммм… Насколько она яркая?
— Около четырех кельвинов.
Чего?! По Кельвину же измеряют температуру, а не яркость. Я еще больше наклонила голову.
— Э-э… и как продвигается наблюдение?
— Ну, приемник юстирован на минус тридцать километров в секунду, но если протозвезда меньше одного миллиянского на луч…
Это начинало походить на абсурдную сценку комедийного дуэта Эбботта и Костелло: я была совершенно уверена, что слышала все эти слова раньше, но понятия не имела, что их можно сложить в таком порядке. Угол наклона моей головы уже превратил меня из «задумчивой студентки» в «растерянную собаку». Примерно так я себя и чувствовала, потому что понимала все меньше и меньше.
Наблюдатель продолжал радостно болтать о своем исследовании. Мы оба были астрономами, но терминология неслась мимо меня, как будто я ступила в совершенно неизвестную область. Я держалась изо всех сил, но почувствовала, как где-то в животе шевельнулось что-то вроде страха. Неужели наши исследования так различались только потому, что мы работали с более длинными волнами? По-видимому, так и обстояло дело. (К счастью, к концу лета, после десяти недель исследований и ускоренного курса радиоастрономии, я уже болтала на равных с остальными наблюдателями.)
— Кстати, мы как раз сейчас собираемся сменить объекты и перейти к…
Наблюдатель продолжал говорить, но тут что-то щелкнуло у меня в голове и все наконец встало на свои места: телескоп вел наблюдение
Такие радиотелескопы, как VLA или злополучный 300-футовый телескоп в Грин-Бэнк в Западной Виргинии, на первый взгляд не очень похожи на «обычные» — блестящие зеркальные установки, спрятанные в куполах и осторожно выдвигаемые для наблюдений только ночью. У большинства радиотелескопов нет куполов, а изогнутая поверхность хотя и напоминает зеркало телескопа, но выглядит не как сверкающее зеркало, а скорее как гигантская металлическая чаша.
Дело, конечно, в том, что мы смотрим на них человеческими глазами. Радиотелескопы работают на дальнем конце электромагнитного спектра, улавливая свет с длинами волн, измеряемыми в миллиметрах, сантиметрах и даже полных метрах, что далеко выходит за пределы узкого диапазона, доступного нашему зрению. Для улавливания волн такой длины поверхности этих радиотелескопов делают блестящими; радиоизлучение, льющееся с неба, отражается от радиоприемника и фокусируется в детекторе почти так же, как оптический свет отражается от традиционного зеркала.