Так как при бросании 6 костей в среднем появляется одна шестерка, при бросании 12 костей это среднее равно двум и при бросании 18 костей — трем, то часто считают, что вероятности указанных событий равны. Иногда полагают, что эта вероятность равна 1/2. Здесь довольно ясно видна разница между математическими ожиданиями и вероятностями. Если подбрасывается большое число костей, то вероятность того, что число шестерок не меньше среднего числа их появлений, действительно совсем немного превосходит 1/2. Таким образом, это эвристическое соображение оправдывается при большом числе подбрасываний, но при относительно малом их числе ситуация совсем другая. Для значительного числа костей распределение появления шестерок приближенно симметрично относительно среднего, и вероятность появления этого среднего мала. При небольшом же числе костей распределение асимметрично, и кроме того, вероятность появления числа шестерок, в точности равного его математическому ожиданию, достаточно велика.
Начнем с вычисления вероятности появления ровно одной шестерки при 6 бросаниях. Вероятность появления одной шестерки и пяти других очков в некотором определенном порядке равна
Аналогично, вероятность появления ровно
Вообще вероятность появления
Эта формула задает вероятности, отвечающие так называемому биномиальному закону.
Вероятность появления хотя бы одной шестерки при шести бросаниях равна
При бросании 6
Ньютону пришлось самому вычислять эти вероятности. Мы же можем прибегнуть к помощи таблиц (см., например, Ф. Мостеллер, Р. Рурке, Дж. Томас, Вероятность, стр. 325 и 398). Наша табличка дает вероятности получения числа шестерок, не меньшего, чем математическое ожидание числа их появления, в 6
6 | 6 | 12 | 18 | 24 | 30 | 96 | 600 | 900 |
1 | 2 | 3 | 4 | 5 | 16 | 100 | 150 | |
0.665 | 0.619 | 0.597 | 0.584 | 0.576 | 0.542 | 0.517 | 0.514 |
Итак, Пепайсу следовало предпочитать пари с шестью бросаниями пари с бо́льшим числом бросаний.
Биномиальное распределение рассматривается в уже цитированной книге «Вероятность», гл. VI.
20. Решение задачи о трехсторонней дуэли
У дуэлянта
(0.5)·(0.3) + (0.5)²·(0.7)·(0.3) + (0.5)³·(0.7)²·(0.3) + ...
Каждое слагаемое отвечает последовательности промахов
Таким образом, попасть в
Обсуждая эту задачу с Т. Лерером, я спросил его, благородно ли это решение с точки зрения кодекса о дуэлях. Лерер возразил, что подобный кодекс для дуэлей с тремя участниками не разработан, так что мы с полным основанием можем простить
21. Решение задачи о выборке с возвращением
Если первый вытянутый шар — красный, то неважно, из какой урны он вынут, так как теперь в этой урне будет поровну красных и черных шаров и второй шар не даст оснований для решения. Поэтому, если сначала вытянут красный шар, следует вернуть его в урну перед вторым извлечением. Если же вынут черный шар, то лучше не возвращать его в урну.
При такой стратегии вероятность правильного ответа равна:
Урна | Урна | Решение | |
Оба красные | 1/2·2/3·2/3 | 1/2·101/201·101/201 ≈ 1/8 | Урна |
Красный, черный | 1/2·2/3·1/3 | 1/2·101/201·100/201 ≈ 1/8 | Урна |
Черный, красный | 1/2·1/3·1 | 1/2·100/201·101/201 ≈ 1/8 | Урна |
Оба черные | 1/2·1/3·0 | 1/2·100/201·99/200 ≈ 1/8 | Урна |
Полная вероятность правильного решения приближенно равна (заменяя 100/201 на 1/2 и т. д.):
Если вытягивать оба шара без возвращения, то вероятность угадать приблизительно равна 5/8, а при возвращении 21.5/36 (0.625 < 0.597).
22. Решение задачи о выборах
При