Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

Так как при бросании 6 костей в среднем появляется одна шестерка, при бросании 12 костей это среднее равно двум и при бросании 18 костей — трем, то часто считают, что вероятности указанных событий равны. Иногда полагают, что эта вероятность равна 1/2. Здесь довольно ясно видна разница между математическими ожиданиями и вероятностями. Если подбрасывается большое число костей, то вероятность того, что число шестерок не меньше среднего числа их появлений, действительно совсем немного превосходит 1/2. Таким образом, это эвристическое соображение оправдывается при большом числе подбрасываний, но при относительно малом их числе ситуация совсем другая. Для значительного числа костей распределение появления шестерок приближенно симметрично относительно среднего, и вероятность появления этого среднего мала. При небольшом же числе костей распределение асимметрично, и кроме того, вероятность появления числа шестерок, в точности равного его математическому ожиданию, достаточно велика.

Начнем с вычисления вероятности появления ровно одной шестерки при 6 бросаниях. Вероятность появления одной шестерки и пяти других очков в некотором определенном порядке равна . Искомая вероятность получается умножением этого количества на число возможных способов упорядочения одной шестерки и пяти других очков. В задаче 18 мы нашли, что это число равно . Таким образом, вероятность появления ровно одной шестерки равна

Аналогично, вероятность появления ровно x шестерок при бросании шести костей равна

         x = 0, 1, 2, 3, 4, 5, 6.

Вообще вероятность появления x шестерок при n бросаниях равна

         x = 0, 1, 2, 3, ..., n.

Эта формула задает вероятности, отвечающие так называемому биномиальному закону.

Вероятность появления хотя бы одной шестерки при шести бросаниях равна

При бросании 6n костей вероятность появления не менее n шестерок равняется

Ньютону пришлось самому вычислять эти вероятности. Мы же можем прибегнуть к помощи таблиц (см., например, Ф. Мостеллер, Р. Рурке, Дж. Томас, Вероятность, стр. 325 и 398). Наша табличка дает вероятности получения числа шестерок, не меньшего, чем математическое ожидание числа их появления, в 6n бросаниях.

6n61218243096600900
n1234516100150
P0.6650.6190.5970.5840.5760.5420.5170.514

Итак, Пепайсу следовало предпочитать пари с шестью бросаниями пари с бо́льшим числом бросаний.

Биномиальное распределение рассматривается в уже цитированной книге «Вероятность», гл. VI.

20. Решение задачи о трехсторонней дуэли

У дуэлянта A мало оснований для оптимизма по поводу настоящей дуэли. Если он стреляет первым, то при попадании в C наверняка B попадет в него, поэтому A не должен стрелять в C. Если же A выстрелит в B и промахнется, то B, наверное, выведет из строя более опасного C первым и A сможет стрелять в B с вероятностью попадания 0.3. Если же A промахнется, то его песенка спета. С другой стороны, предположим, что A попадет в B. Тогда C и

A будут перестреливаться до первого попадания. Шансы выигрыша A равны

(0.5)·(0.3) + (0.5)²·(0.7)·(0.3) + (0.5)³·(0.7)²·(0.3) + ...

Каждое слагаемое отвечает последовательности промахов C и A, заканчивающихся успехом A. Суммируя геометрический ряд, получаем

Таким образом, попасть в B и затем покончить с C — стратегия, дающая для A меньшую вероятность выигрыша, чем пропуск первого выстрела. Поэтому A должен стрелять в воздух, а затем стараться попасть в B.

Обсуждая эту задачу с Т. Лерером, я спросил его, благородно ли это решение с точки зрения кодекса о дуэлях. Лерер возразил, что подобный кодекс для дуэлей с тремя участниками не разработан, так что мы с полным основанием можем простить A преднамеренный промах.

21. Решение задачи о выборке с возвращением

Если первый вытянутый шар — красный, то неважно, из какой урны он вынут, так как теперь в этой урне будет поровну красных и черных шаров и второй шар не даст оснований для решения. Поэтому, если сначала вытянут красный шар, следует вернуть его в урну перед вторым извлечением. Если же вынут черный шар, то лучше не возвращать его в урну.

При такой стратегии вероятность правильного ответа равна:

 Урна AУрна BРешение
Оба красные1/2·2/3·2/31/2·101/201·101/201 ≈ 1/8Урна A
Красный, черный1/2·2/3·1/31/2·101/201·100/201 ≈ 1/8Урна B
Черный, красный1/2·1/3·11/2·100/201·101/201 ≈ 1/8Урна A
Оба черные1/2·1/3·01/2·100/201·99/200 ≈ 1/8Урна B

Полная вероятность правильного решения приближенно равна (заменяя 100/201 на 1/2 и т. д.):

Если вытягивать оба шара без возвращения, то вероятность угадать приблизительно равна 5/8, а при возвращении 21.5/36 (0.625 < 0.597).

22. Решение задачи о выборах

При a = 3 и b = 2 всеми возможными равновероятными последовательностями извлечения бюллетеней являются следующие:

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии