Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

 АААВВ     *ААВВА     *АВВАА

*АВАВА     *ВАВАА     *ВААВА

*ВВААА      ААВАВ     *АВААВ

*ВАААВ,

где звездочкой отмечены комбинации, в которых имеет место равновесное положение. Таким образом, в нашем случае искомая вероятность равна 8/10.

Перейдем теперь к общей ситуации произвольных a и b. Рассмотрим сначала те последовательности, в которых первое равновесное положение достигается в случае, когда подсчитаны 2n бюллетеней, nb. Каждой последовательности, в которой A лидирует до первого ничейного результата, соответствует единственная последовательность, в которой лидирует B. Так, при n = 4 последовательности

ААВАВАВВ

с лидером A отвечает последовательность

ВВАВАВАА

в которой лидирует B. Эта последовательность получается из первой заменой A на

B и B на A.

Итак, число последовательностей, в которых A лидирует до первой ничьей, равно числу последовательностей с лидером B. Задача сводится, таким образом, к вычислению вероятности равновесного положения, до которого лидирует B.

Так как за A подано большее количество голосов, то рано или поздно A становится лидером. Если первый бюллетень подан за B, то ничья неизбежна. Единственной возможностью ничьей с B, лидирующим в начале, является случай, когда первый бюллетень подан за B. Вероятность того, что это так, равна b/(a + b). Но это же значение равно вероятности ничьей с лидирующим в начале A, и, таким образом, вероятность ничейного положения равна

где r = a/b. Заметим, что если a

много больше, чем b, т. е. когда r велико, вероятность ничьей мала (что интуитивно вполне понятно). Формула верна также и при b = a, так как в этом случае вероятность ничьей равна единице.

23. Решение задачи о ничьих при бросании монеты

Ниже мы обобщим метод решения задачи 22 и покажем, что вероятность отсутствия ничейного результата (при N четном и N нечетном) равна

Эти формулы показывают, что указанная вероятность одна и та же для четного N и для следующего за ним нечетного числа N + 1. Например, когда N = 4, надо применить вторую формулу. Шестнадцатью возможными исходами являются

 ААAA      BAAA      ABBA      BABB

*AAAB      AABB      BABA     *BBAB

*AABA      ABAB      BBAA     *BBBA

 ABAA      BAAB      ABBB     *BBBB

где звездочкой отмечены комбинации с равновесным положением.

Поскольку число сочетаний из 4 по 2 равно 6, то вторая формула действительно верна для этого значения N.

При N = 2n вероятность

x выигрышей A есть . Если xn, то вероятность ничьей есть 2x/N (на основании задачи 22), а при xn эта вероятность равна 2·(Nx)/N. Чтобы получить вероятность ничьей, находим вероятность x выигрышей, умножим ее на условную вероятность ничьей при x выигрышах и просуммируем полученные выражения, что дает

          (1)

Если подставить в это выражение формулу для биномиальных коэффициентов и произвести необходимые сокращения, то с точностью до слагаемого

получим , где суммирование ведется по всем возможным значениям x. Следовательно, мы можем переписать выражение (1) в виде

          (2)

Отсюда видно, что вероятность отсутствия ничьей есть

 ,

что после небольших преобразований может быть записано в виде

,

как было указано выше.

24. Решение задачи о странном метро

Поезда в направлении к невесте останавливаются у перрона, куда приходит Мэрвин, скажем, в 300, 310, 320 и т. д., поезда в противоположном направлении в 301, 311, 321 и т. д. Чтобы поехать к матери, Мэрвин должен попасть в одноминутный интервал между поездами указанных типов.

25. Некоторые возможные решения задачи о длинах случайных хорд

Пока выражение «наудачу» не уточнено, задача не имеет определенного ответа. Следующие три возможных предположения с соответствующими тремя различными вероятностями иллюстрируют неопределенность понятия «наудачу», часто встречающуюся в геометрических задачах. Мы не можем гарантировать, что эти результаты должны согласовываться с некоторым физическим процессом, который мог бы быть использован для выбюра случайных хорд. Иначе задача могла бы быть проверена эмпирически.

Пусть радиус круга равен r.

(а). Допустим, что расстояние хорды от центра круга равномерно распределено между 0 и r. Поскольку правильный шестиугольник со стороной r можно вписать в круг, для определения искомой вероятности найдем расстояние d стороны этого шестиугольника от центра и разделим на величину радиуса. Заметим, что d — высота правильного треугольника со стороной r. Из планиметрии известно, что

Следовательно, искомая вероятность равна

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии