Читаем Путь к сути вещей: Как понять мир с помощью математики полностью

Система 2 – это то, что вы приводите в действие, когда вас спрашивают, сколько будет 47 × 83 или сколько дней прошло с вашего рождения. Вы можете это сосчитать, но вам надо подумать. Может быть, вам даже понадобятся бумага и карандаш. Ясно одно: вам совершенно не хочется это делать. Пусть даже Система 2 надежнее и строже, вы используете ее только тогда, когда у вас нет выбора, потому что думать, производить вычисления и логические рассуждения – дело утомительное.

Теорию Канемана можно кратко изложить так.

Каждый раз, когда Система 1 дает нам ответ, мы чувствуем искушение воспользоваться им, не обращаясь к Системе 2 – даже чтобы проверить, что ответ Системы 1 верен. Поскольку Система 2 задействует много умственных ресурсов и энергии, мы отдаем предпочтение инстинкту. Биологически мы предрасположены к интеллектуальной лени.

В некоторых ситуациях наша Система 1 систематически ошибается. Мы все совершаем одни и те же ошибки, постоянно, словно у нас в мозгу неверно подключены провода. Это и есть пресловутые когнитивные искажения, которые Канеман и его школа задались целью изучить. Например, нам всем хочется сказать, что мячик стоит 10 центов.

Книга Канемана потому и получила такой успех, что выходит за пределы простой теоретической констатации и предлагает конкретную методику, чтобы не дать нам сесть в лужу.

Рекомендация проста: выучить наизусть список когнитивных искажений, представленный в его книге, и каждый раз, осознавая, что мы находимся в одной из этих типичных ситуаций, принуждать себя мобилизовывать Систему 2 без учета Системы 1.

Лично я думаю, что есть способ лучше, и сейчас я вам его объясню.

«Это нечестно!»

Впервые я услышал про эту историю с мячиком и битой от подруги, которая изучала когнитивистику в Принстоне. Она как раз прочла книгу Канемана и хотела проверить ее на мне.

Как и большинство людей, я дал инстинктивный ответ. Я прислушался к своей Системе 1, не зная, что это называется какой-то там Системой 1. Не раздумывая, не вычисляя, я сказал первое, что пришло мне на ум: «5 центов».

Я тут же ощутил, что мой ответ смутил подругу, но не сразу понял почему. Она не поленилась объяснить мне, что не так. По-хорошему, предполагалось, что я отвечу «10 центов» или же задумаюсь на несколько секунд и только тогда скажу «5 центов». А вот отвечать так, как я только что ответил, сразу же говорить «5 центов», не тратя времени на размышление, я не имел права. Кто-то даже получил Нобелевскую премию за то, что доказал, что это невозможно. Вскоре, прежде чем сменить тему разговора, моя подруга все же нашла объяснение – простое, прагматичное и не то чтобы полностью неверное: «Стоп, это нечестно, ты же математик!»

Когда я решил повторить этот тест в моем окружении, я был искренне удивлен тем, сколько людей отвечают «10 центов», и еще больше удивлен, что им сложно найти правильное решение, даже когда они понимают, что первоначальный ответ неверен. Самое невероятное – все говорили мне, что «надо посчитать», словно визуально не было очевидно, что правильный ответ «5 центов».

Я оказался в ситуации Дальтона с его волшебной геранью, только вместо недостающей колбочки, наоборот, видел больше цветов, чем мои друзья. Еще одно различие между мной и Дальтоном, конечно, в том, что причина никак не была связана с генетикой.

В конце этой главы я объясню, как у меня получается видеть правильный ответ и как вы можете тоже научиться его видеть.

A или B

Поскольку эта история с мячиком и битой заинтриговала меня всерьез, я стал пытаться понять, что мешало моим друзьям увидеть правильный ответ, хотя он и был очевиден.

Примерно как Дальтон, я провел собственное небольшое расследование и думаю, что нашел ответ. Предложив друзьям тест с мячиком и битой, я задавал им такой вопрос:

«Представь, что ты должен принять жизненно важное решение. У тебя есть вариант A и вариант B. Интуиция подсказывает выбрать A, но разум говорит выбрать B. Как ты поступишь?»

Я задал этот вопрос примерно десяти своим друзьям-нематематикам, и почти все не задумываясь ответили, что следуют своей интуиции и выбирают A. Один человек выбрал B. Еще один долго колебался и не дал ясного ответа.

Внимание, нет никакой гарантии, что вы получите такой же высокий процент ответов А, если повторите эксперимент в своем кругу. Мой опросник страдает тем, что называется предвзятостью отбора: мои друзья вряд ли могут служить наглядным срезом населения, и весьма вероятно, что у людей, прислушивающихся к интуиции, больше шансов стать именно моими друзьями.

На самом деле точное соотношение A и B меня не интересовало. Я хотел узнать, даст ли кто-нибудь ответ, который дал бы я сам. Этого не сделал никто.

Моя гипотеза состоит в том, что именно мой необычный ответ на этот вопрос и есть тот ключ, который позволил мне достичь успехов в математике, а заодно и исправить несколько когнитивных искажений.

Не такая уж обоснованная гипотеза

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии