Читаем Путь к сути вещей: Как понять мир с помощью математики полностью

Гаусс был одним из величайших математиков в истории, одним из тех, кого не колеблясь ставят рядом с Фалесом, Пифагором, Евклидом, Архимедом, Аль-Хорезми, Декартом, Эйлером, Ньютоном, Лейбницем, Риманом, Кантором, Пуанкаре, фон Нейманом, Гротендиком и еще несколькими. Он был настолько блистателен и обладал таким творческим потенциалом, что современники отказывались верить, что его интеллект порожден биологически нормальным человеческим мозгом. В некотором роде он был Альбертом Эйнштейном своего времени.

И закончилось все, кстати, ровно так, как и должно было (абсолютно как с Эйнштейном): когда Гаусс умер, кто-то счел весьма хитроумным изъять его мозг в надежде проникнуть в его секреты. Два века спустя мозг Гаусса так и лежит в банке, бережно хранимый в запасниках Гёттингенского университета. Никто не нашел в нем ничего интересного.

Согласно легенде, в возрасте семи лет маленький Гаусс очень напугал своего школьного учителя. Тот задал классу вычислить сумму целых чисел от 1 до 100, полагая, что так подарит себе добрых 25 минут тишины. Он не предусмотрел, что один из мальчишек ответит через несколько секунд.

Мне было 17 лет, когда преподаватель математики нашего выпускного класса рассказал эту историю, и она сильно впечатлила нас. Мы не понимали, как Гаусс мог посчитать настолько быстро. По сравнению с таким гением мы все чувствовали себя несколько жалко.

Объяснение нашего преподавателя заключалась в том, что здесь есть «хитрость». Мы хотим посчитать сумму целых чисел от 1 до 100, то есть выполнить сложение

1 + 2 + 3 + 4 + … + 97 + 98 + 99 + 100.

Хитрость в том, чтобы умножить эту сумму вдвое, дважды посчитав каждое целое число от 1 до 100, и выстроить эту двойную сумму в две строки следующим образом:

1 + 2 + 3 + 4 +… + 97 + 98 + 99 + 100 + 100 + 99 + 98 + 97 +… + 4 + 3 + 2 + 1.

Что за ерунда! Зачем считать эту сумму дважды? Зачем так выстраивать числа? Может, это и странно, но мы в полном праве так сделать. В любом случае каждое число от 1 до 100 появляется здесь дважды. Значит, двойная сумма в два раза больше числа, которое мы хотим найти.

А теперь посмотрите не на строки, а на столбцы. У нас 100 столбцов, и в каждом из них по два числа, сумма которых всегда равна 101. Это может показаться волшебством, но это так. Значит, двойная сумма равна 100 умножить на 101, то есть 10 100. Нужное нам число – половина от этого, то есть 5050.

Не надо стыдиться, если вам понадобится перечитать это рассуждение несколько раз, прежде чем счесть его убедительным. Как и в любом математическом рассуждении, в нем есть что-то странное и пугающее. Пока нам не удается счесть его очевидным, приходится расшифровывать его строчка за строчкой, что требует времени и концентрации.

Этапы рассуждения довольно просты и, по идее, позволят вам прийти к трем выводам.

1. Это верное доказательство факта, что сумма целых чисел от 1 до 100 равна 5050.

2. Вполне правдоподобно, что кто-то искусный в устном счете может выполнить это рассуждение мысленно за несколько секунд.

3. Такая мысль не могла зародиться в голове семилетнего или, в случае Тёрстона, пятилетнего ребенка.

Во всяком случае такие выводы в 17 лет сделал я сам. Я также заключил, что математика создана не для меня, потому что она предназначена только для этих особых людей, гениев, у которых мозг работает не так, как мой, и может генерировать столь невероятные идеи.

Преподаватель в моем выпускном классе был прекрасным педагогом, я высоко его ценил, и он научил меня очень многому. Но, говоря нам о «хитрости», в тот день он оказал нам плохую услугу.

Нет никакой хитрости. Не было и не будет. Верить в существование хитростей так же токсично, как верить в существование истин, по природе своей контринтуитивных. Это два главных предрассудка в идеологии Системы 2 – вот эта вера, что наша интуиция ничего не стоит и мы должны механически применять методы, которых не понимаем.

Разумеется, бывает так, что что-то происходит и мы не понимаем почему. И даже довольно часто. Но это всегда временная ситуация, которая ждет объяснения.

Верить, что на структурном уровне существуют какие-то хитрости, – значит согласиться с мыслью, что есть вещи, которых мы никогда не поймем, и их нужно выучить наизусть. Путать проверку доказательства строчка за строчкой с его интуитивным пониманием. Вступить в подчиненные отношения с Системой 2. Согласиться на нечестное и унизительное для нас распределение ролей: великие гении находят всякие хитрости, а вот мы годны только на то, чтобы проверить, что сложение верно.

Если все это только для того, чтобы проверить, что сумма целых чисел от 1 до 100 действительно равна 5050, – да плевать на это, откровенно говоря. Нам важно научиться думать как Гаусс и Тёрстон.

Ловушка языка

Чтобы понять, что скрывается за математическими «хитростями», проще всего посмотреть на рецепт бананового кекса, например такой:


Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии