Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

откуда n < 1/5, n > 1, или n ≠ 1. Мы получили бесконечное множество значений x. Чтобы выбрать из них подходящие, разберем два случая, в зависимости от того, четное или нечетное число n. Когда n = 2k, данное неравенство можно переписать в виде |x|2k < 1, т. е. (|x| − 1)k < 0. Поскольку x < 0, то получаем (x + 1)k > 0. Так как x = 20k − 2/5 − 10k, то

откуда k < −3/10, 0 < k < ½. Так как k — целое, то k = −1, −2, −3, ... . Получаем серию решений первоначального неравенства: x = 20k − 2/5 − 10kk = −1, −2, −3, ... .

Пусть теперь n = 2k + 1. Тогда x = 10(2k + 1) − 2/5 − 5(2k + 1) = −10k + 4/5k. Так как x < 0, то исходное неравенство при этих значениях n удовлетворяется, если n ≠ 1, т. е. k ≠ 0.

Ответ. 0 ≤ x < 1, x = 20k − 2/5 − 10k, k = −1, −2, −3, ...; x = −10k + 4/

5kk = ±1, ±2, ±3, ... .

10.33. Данное неравенство эквивалентно неравенству

0 ≤ log2 3 − 2x/1 − x < 1.

(Ограничение слева обеспечивает неотрицательность числа, стоявшего под знаком квадратного корня.)

Поскольку 0 = log2 1, 1 = log2 2 и основание логарифмов больше единицы, последнее неравенство можно записать так:

1 ≤ 3 − 2x/1 − x < 2.

Требование положительности числа 3 − 2x/1 − x, которое могло быть нарушено при таком преобразовании, выполняется здесь автоматически.

Поскольку неравенство 1 ≤ y < 2 эквивалентно неравенству y − 1/y − 2 ≤ 0, получаем

Ответ.x ≥ 2.

10.34. Данное неравенство равносильно системе

0 < |x − 1/2x + 1| < 1.

Тем самым мы обеспечили положительность числа, стоявшего в условии под знаком логарифма. Левое неравенство можно заменить условием x ≠ 1. Тогда получим систему

Эту систему можно преобразовать так:

Входящее в эту систему неравенство можно возвести в квадрат, не нарушая его равносильности:

(x − 1)² < (2x + 1)²,

т. е. 3x² + 6х > 0, откуда x < −2, x > 0. Итак,

Ответ.x < −2, 0 < x < 1, x > 1.

10.35. Приведем все логарифмы, участвующие в неравенстве, к основанию 5:

Последнее из преобразований правой части неравенства требует, вообще говоря, ограничения x ≠ 1. Однако это значение неизвестного оказывается «запретным», поскольку в левой части остается выражение, содержащее log5 x в знаменателе. Получаем равносильное неравенство

которое преобразуется к виду

допускающему применение метода интервалов. Итак,

log5 x < −½, 0 < log5 x < log5 3.

Ответ. 0 < x < 1

/√5, 1 < x < 3.

10.36. Так как log½ N = −log2 N, то данное неравенство перепишем в виде

log2 (2x − 1)log2 (2x + 1 − 2) < 2.

Преобразуем второй сомножитель:

log2 (2x + 1 − 2) = log2 [2(2x − 1)] = 1 + log2 (2x − 1).

Обозначив log2 (2x − 1) = y, получим квадратное неравенство

y(y + 1) < 2, или y² + y − 2 < 0,

решения которого лежат в интервале

−2 < y < 1.

Вспоминая, чему равен y, получим

−2 < log2 (2x − 1) < 1,

¼ < 2x − 1 < 2, 5/4 < 2x < 3.

Ответ. log2 5 − 2 < x < log2 3.

10.37. Преобразуем левую часть неравенства:

Неравенство

log|x + 6| (х² − x − 2) ≥ 1

равносильно совокупности двух систем

Второе неравенство первой системы равносильно совокупности систем решая которые найдем

x ≤ −2, x ≥ 4.

Таким образом, первая система может быть приведена к виду

и ее решениями будут интервалы:

x < −7, −5 < x ≤ −2, x ≥ 4.

Решая второе неравенство второй системы, получим −2 ≤ x ≤ 4, а третье неравенство имеет решения x < −1, x > 2. Следовательно, система принимает вид

т. е. не имеет решений.

Ответ.x < −7, −5 < x ≤ −2, x ≥ 4.

10.38. Обозначим logа x = y. Неравенство примет вид

1 + y²/1 + y > 1.

Так как 1 + y² > 0, то и 1 + y > 0. Поэтому данное неравенство равносильно системе

т. е.

Получаем два интервала решений:

−1 < y < 0, y > 1.

Так как y = logа x, то нужно рассмотреть два случая.

Во−первых, если а > 1, то logа x − функция возрастающая и мы получим два интервала решений:

1/a < x < 1, x > а.

Если же 0 < а < 1, то получим другие два интервала решений:

1 < x < 1/a, 0 < x < а.

Ответ. При а > 1: 1/a < x < 1, x > а; при 0 < а

< 1: 0 < x < а, 1 < x < 1/a.

10.39. Перейдем к основанию k:

где y = logk x. Последнее неравенство можно переписать так:

Выражение, стоящее в числителе, всегда положительно. Поэтому решением неравенства будут два интервала:

y < −1, y > 0.

Вспоминая, что y = logk x и 0 < k < 1, найдем соответствующие интервалы для x.

Ответ. 0 < x < 1, x > 1/k.

10.40. Поскольку 4x − 6 должно быть больше нуля, то x > 1. Следовательно, приходим к системе неравенств

Решая второе неравенство системы, найдем x > log2 √7.

Третье неравенство перепишем в виде системы

решением которой будет интервал log2 √6 < x ≤ log23. Так как log2 √7 > log2 √6, то получим решение данного неравенства.

Ответ. log2 √7 < x ≤ log2 3.

10.41. Данное неравенство эквивалентно такому:

Знаменатель всегда положителен. Поэтому

|х² − 4x| + 3 ≥ x² + |x − 5|,

остается раскрыть знаки абсолютной величины. Нанесем точки 0, 4, 5 на числовую ось и рассмотрим четыре случая.

Если x < 0, то получаем систему

которой удовлетворяет полупрямая x ≤ −⅔.

Если 0 ≤ x ≤ 4, приходим к системе

решением которой будет отрезок 1 < x < 2.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература