Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Если 4 < x ≤ 5, то наше неравенство примет вид x² − 4x + 3 ≥ x² + 5 − x, откуда x ≤ −⅔. Это не удовлетворяет условию 4 < x ≤ 5, а потому в данном случае решений нет.

Остается случай x > 5. Раскрывая знаки абсолютных величин, получим x ≤ 8/5. Здесь снова нет решений.

Ответ.x < −⅔; ½ ≤ x ≤ 2.

10.42. Из условия следует, что x > 2. Поэтому x³ − 7 > 0, а также x − 1 > 1 и (x − 1)² > 1. Данное неравенство равносильно такому:



Так как x − 1 > 0, то  Поскольку x³ − 7/2 > 0, то ограничение x > 2 достаточно для того, чтобы следующие преобразования приводили к равносильным неравенствам:

После упрощений последнее неравенство сведется к квадратному: −4x² + 5x + 3/2 ≥ 0, имеющему решения −¼ < x < 3/

2. Так как, кроме того, x > 2, то исходное неравенство не имеет решений.

Ответ. Решений нет.

10.43. Так как первый сомножитель положителен, то, чтобы неравенство удовлетворялось, необходимо

log2 (2 − 2x²) > 0, т. е. 2 − 2x² > 1, √2|x| < 1,

откуда

0 ≤ √2|x| < 1 и −1 ≤ √2|x| − 1 < 0.

Следовательно, |√2|x| − 1| ≤ 1. Таким образом, первоначальное неравенство может удовлетворяться только, если

log2 (2 − 2x²) ≥ 1, или 2 − 2x² ≥ 2, −x² ≥ 0,

т. е. x = 0. Проверкой убеждаемся, что x = 0 является решением неравенства.

Ответ.x = 0.

10.44. Так как , то перепишем неравенство следующим образом:

Обозначив log3 x + 1/x − 1 = y, получим log2 y < 0, откуда

0 < y < 1, т. е. 0 < log3 x + 1/x

− 1 < 1, 

а потому  1 < x + 1/x − 1 < 3.

Последнее неравенство можно записать так:

(x + 1/x − 1 − 1)(x + 1/x − 1 − 3) < 0

(если некоторое выражение заключено между двумя числами, то разности между ним и каждым из этих чисел имеют разные знаки).

После выполнения действий в скобках и небольших упрощений получим

x − 2/(x − 1)² > 0,

откуда x > 2.

Ответ.x > 2.

10.45. Если 0 < x² − 1 < 1, то придем к системе

Так как последнее неравенство следует из первого, то получаем такую систему:

откуда 1 < x < √2.

Если x² − 1 > 1, т. е. x² > 2, то приходим ко второй системе:

откуда x > 3 + √5/2.

Ответ. 1 < x < √2, x > 3 + √5/2.

10.46. Перепишем неравенство в виде

Равносильность при этом не нарушается, так как оба выражения в квадратных скобках (полученное и данное в условии) существуют одновременно при x > 0. Выясним, когда основание положительно и когда оно отрицательно (если оно равно нулю, то неравенство не удовлетворяется). Для этого воспользуемся условным символом V, обозначающим сравнение левой и правой частей, и не будем нарушать равносильность при преобразованиях:

Преобразуем первое соотношение, имея в виду, что x − положительное число:

Итак, при  основание положительно, а при  оно отрицательно. Из отрицательных значений основания мы должны рассмотреть лишь те, при которых x − 4, а следовательно и x, — четное число. Среди чисел, заключенных в интервале ,  есть только одно четное: x = 2. Подставим это число в левую часть исходного неравенства:

Таким образом, x = 2 не удовлетворяет данному неравенству.

Пусть теперь основание положительно, т. е. . Тогда неравенство (1) равносильно такому:

т. е.

(пояснения приведены во втором указании на с. 192). В последнем неравенстве основание степени положительно, так как x > 0. Следовательно, его можно преобразовать к виду

т. е.

Мы рассматриваем случай . Решив неравенства

получим, что выражение  больше нуля, когда x > 6, равно нулю, когда x = 6, и меньше нуля, когда  Таким образом, вместо неравенства (2) можно записать

(x − 6)(x − 4) ≥ 0,

т. е.

Ответ.

10.47. Данное неравенство может выполняться только в том случае, если дискриминант стоящего в левой части квадратного трехчлена относительно x положителен, т. е.

Решением этого неравенства будут

log0,5 y² < −3, log0,5 y² > 1.

В первом случае получим y² > 8, во втором 0 < y² < ½.

Ответ.y < −√8, −1/√2 < y < 0, 0 < y

< 1/√2, y > √8.

10.48. Для ответа на вопрос задачи нужно найти такие значения а, что множество решений второго неравенства не у́же множества решений первого. Таким образом, если y первого неравенства есть решения, они все должны попасть в интервал (−3, −1).

Корнями квадратного трехчлена

х² − а(1 + а²)x + а4

будут числа а и а³. Когда они совпадают (а = ±1, а = 0), ветви параболы направлены вверх и квадратный трехчлен не может стать отрицательным.

Докажем, что следствием неравенства, не имеющего решений, является любое неравенство. В частности, любое решение первого неравенства при а = 0, ±1 содержится среди решений второго. Предположим, что это не так. Тогда существует решение первого неравенства, не удовлетворяющее второму. Мы приходим к противоречию с тем фактом, что первое неравенство в рассматриваемых случаях вообще не имеет решений.

Если же корни различны (а ≠ а³), то оба они должны попасть в интервал [−3, −1]

т. е.

Ответ.

10.49. Сначала решим строгое неравенство

Оно равносильно системе

При а ≤ 1 решений y этой системы нет. При а > 1 ее решениями будут значения x, для которых 1 < x < а.

Остается выяснить, какие значения x удовлетворяют уравнению

(4)

Это уравнение равносильно совокупности двух систем:

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература