Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Решение первой системы показано на рис. P.17.6, а, решение второй — на рис. P.17.6, б, а решение совокупности — на рис. P.17.6, в.

Внимание! Интервалы оси абсцисс (0, 1) и (1, +∞) принадлежат множеству решений. Остальные точки границы ему не принадлежат.

17.7. Найдем решения неравенства

(x − |x|)² + (y − |y|)² ≤ 4    (17)

для каждого квадранта отдельно.

Пусть одновременно x ≥ 0, y ≥ 0. Тогда |x| = x, |y| = y. Неравенство (17) приобретет вид 0 ≤ 4, т. е. оно удовлетворяется при всех x и y из первого квадранта.

Когда x ≤ 0, y ≥ 0, точки (x, y) лежат во втором квадранте и на его границе. Тогда |x| = −x, |y| = y и неравенство (17) приобретет вид

(2x)² ≤ 4, т. е. x² ≤ 1, или −1 ≤ x ≤ 0,

так как мы рассматриваем значения x ≤ 0. Это будет полоса шириной 1, расположенная во втором квадранте параллельно оси Оу (рис. P.17.7).

Аналогично в четвертом квадранте получим полосу шириной 1 параллельную оси Ox.

В четвертом квадранте x ≤ 0, y ≤ 0 и мы получим из (17) неравенство

х² + y² ≤ 1,

т. е. ему удовлетворяют точки четвертого квадранта, лежащие внутри и на границе круга x² + y² = 1.

Нанесем на рис. P.17.7 точки прямой y = −x. Значения, удовлетворяющие неравенству

x + y ≤ 0, будут лежать под этой прямой и на ней. Нас интересует площадь фигуры, покрытой штриховкой. Эта фигура состоит из двух прямоугольных треугольников с катетами 1 (в сумме они образуют квадрат со стороной 1) и четверти круга, имеющего радиус 1.

Ответ. 1 + π/4.

17.8. Уравнение прямой, проходящей через точки В и D, имеет вид y = 8 − x, а уравнение прямой AC есть 2y = x + 4. Решая эти два уравнения в системе, найдем x = y = 4, т. е. E(4; 4).

Проведем все построения, описанные в указании II на с. 201 (рис. P.17.8).

Дополнительно проведем ЕL || CK, где L ∈ HKCK ⊥ HKF — точка пересечения HK и Оу. Искомая площадь может быть определена так:

SABCDE = SFGCK − SCKD − SELD − SELH + SAFH − SAGB.

Каждый из треугольников — прямоугольный с известными катетами.

Ответ. 36.

17.9. Пусть x + y = u, yx

= v. Тогда

а множество решений этой системы проецируется на прямую u = 2. Другими словами, нас интересуют все значения v, при каждом из которых система неравенств (18), (19) имеет хотя бы одно решение. Пусть u — независимая переменная. Она будет абсциссой, а f(u) — ординатой для исследуемой нами плоскости. Величина v — параметр. График функции f(u) — парабола, если v² − 1 ≠ 0. Она обращена ветвями вверх при v² − 1 > 0 и ветвями вниз при v² − 1 < 0. Отдельно нужно рассмотреть случай v² − 1 = 0.

Итак, перед нами три случая.

1. v² − 1 < 0, т. е. −1 < v < 1. Парабола обращена ветвями вниз. При достаточно больших значениях u > 1 она принимает отрицательные значения. Поэтому в плоскости (u, v) в проекции на прямую u = 2 мы получим интервал −1 < v < 1.

2. v² − 1 = 0. Если v = −1, то f(u) ≡ 2 и отрицательных решений нет. Если v = 1, то f(u) = 12u, где u > 1. Отрицательных значений, удовлетворяющих системе (18), (19), в этом случае тоже нет.

3. Когда v² − 1 > 0, т. е. либо v < −1, либо v > 1 ветви параболы обращены вверх. Правее прямой u = 1 парабола может принимать отрицательные значения в двух случаях:

а) уравнение f(u) = 0 имеет два корня, и при этом абсцисса u0 вершины (u0;

v0) параболы превосходит 1, т. е.

После простых преобразований:

Окончательно получим

Система не имеет решений, так как одновременно все три ограничения не удовлетворяются;

б) абсцисса u0 вершины (u0; v0) не больше 1, но f(1) меньше нуля:

После преобразований получим

Обобщим все рассмотренные варианты. Условиям удовлетворяют два интервала значений v, проекции которых в плоскости (u, v) на прямую u = 2 не пересекаются:

v ∈ (−3, −2) ∪ (−1, 1).

Когда мы вернемся к переменным x и y, ситуация не изменится, так как замена

не ведет к изменению расстояний между соответственными точками в старой и новой системе координат.

Основная трудность этой задачи состояла в том, что исследование пришлось вести одновременно в двух плоскостях (u, f(u)) и (u, v). К тому же, в конечном счете, нас интересует третья плоскость (x, y).

Ответ. 2.

17.10. Если x1 и x2 — целочисленные корни данного уравнения, то x1 + x2 = а + 3, откуда следует, что а = x

1 + x2 − 3 — целое число. Корни данного уравнения равны

отсюда

т. е.  — целое число. Тогда

а² −2a + 1 = п² + 20, т. е. (а − 1)² − п² = 20,

или

(аn − 1)(а + n − 1) = 20.

Остается рассмотреть варианты, когда каждая из скобок равна целочисленным множителям числа 20. Начнем со случая

Сложив эти два уравнения, получим уравнение

2a − 2 = 21,

не имеющее целочисленных решений.

Можно сделать более общий вывод: если в правой части других пар уравнений типа (20) и (21) есть один нечетный множитель числа 20, то целочисленных решений y системы аналогичной (20), (21) нет. Остается рассмотреть только случаи

Нетрудно убедиться, что первая и вторая системы приводят к одному значению а = 7, а третья и четвертая — к значению а = −5.

При а = 7 имеем x1 = 3, x2 = 7.

При а = −5 получим x1 = −3, x2 = 1.

Ответ. −5; 7.

17.11. Обозначим x² = y, где y ≥ 0. Получим квадратное уравнение

y² − (1 − 2a)y + а² − 1 = 0, (22)

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература