Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Так как cos x + √3 sin x = 2 cos (x − π/3), то получим

В условии сказано, что 0 ≤ x ≤ 2π, поэтому x − π/3 нужно искать в интервале −π/3 ≤ xπ/3 ≤ 2π − π/3.

На рис. P.15.5 изображено расположение на тригонометрическом круге значений y = xπ/3, удовлетворяющих последней системе, т. е.

π/3 < xπ/3 < π/2, π/2 < xπ/3 < /3,

/3 < xπ/3 < /2, /2 < xπ/3 < /3

Ответ./3 < x < /6, /6 <

x < π,

/3 < x < 11π/6, 11π/6 < x < 2π.

15.6. Неравенство можно переписать так:

cos (|lg x| − π/4) > ½,

откуда

π/3 + 2nπ < |lg x| − π/4 < π/3 + 2nπ,

т. е.

π/12 + 2nπ < |lg x| < /12 + 2nπ.

При n < 0 не удовлетворяется правое неравенство.

При n = 0 имеем |lg x| < /12, т. е. −/12 < lg x < /12, а потому

При n = 1, 2, 3, ... имеем −π/12 + 2nπ < lg x < /12 + 2nπ и −/12 − 2nπ < lg xπ/12 − 2n

π.

Ответ.  n = 1, 2, 3, ... .

15.7. Так как arccos (х² + Зх + 2) ≥ 0, то данное неравенство равносильно системе

Другими словами,

Решаем каждое из трех неравенств системы:

Дискриминант второго неравенства отрицателен, а потому оно удовлетворяется при всех x. Остаются первое и третье:

Ответ.

15.8. Если 1 − x ≤ 0, то неравенство не удовлетворяется, так как

arccos (1 − x) ≥ π/2, если 1 − x ≤ 0,

в то время как arctg √x всегда меньше π/2. При 1 − x > 0 обе части неравенства оказываются в интервале от 0 до π/2, где все тригонометрические функции монотонны. Так как косинус в интервале от 0 до π/2 убывает, то данное неравенство равносильно такому:

cos (acrtg √x) < cos (arccos (1 − x))

(большему углу соответствует меньший косинус). Чтобы arccos (1 − x) существовал, необходимо 1 − x ≤ 1. Вспоминая, что 1 − x > 0, получим 0 ≤ x < 1.

Вычислим cos (arctg √x):

Получаем систему неравенств

Так как 0 ≤ x < 1, то система равносильна такой:

Раскрыв скобки, запишем первое неравенство так: x³ − x² − x > 0, или x(х² − x − 1) > 0. При x = 0 это неравенство не удовлетворяется, а при x > 0 — равносильно неравенству x² − x − 1 > 0. Трехчлен, стоящий в левой части, можно записать так: x(x − 1) − 1. Поскольку x > 0, а x − 1 < 0, то этот трехчлен отрицателен.

Ответ. Нет решений.

15.9. Так как cos² πx + 1 ≥ 1, то второй сомножитель неотрицателен при всех значениях x. Следовательно, неравенство удовлетворяется лишь при положительных значениях сомножителей. Один из них должен быть при этом не меньше единицы. Однако второй не превышает единицы. Для первого же условие 4 xx² − 3 ≥ 1 равносильно требованию −(x − 2)² ≤ 0, что возможно лишь при x = 2.

Одновременно должно удовлетворяться неравенство

log2(cos² πx + 1) ≥ 1,

которому удовлетворяют числа x = n (n = 0, ±1, ±2, ...). Из них выбираем то, которое обеспечивает равенство единице первого сомножителя.

Ответ.x = 2.

15.10. Обозначим первый сомножитель через А, а второй через В, тогда данное неравенство равносильно совокупности двух систем

При А = 0 получаем x = 1. Так как при x = 1 В не существует, то первая система не имеет решений.

Перейдем теперь ко второй системе. Для решения неравенства

logtg x (2 + 4 cos² x) ≥ 2

нет необходимости рассматривать случай 0 < tg x < 1, так как А не существует при этих значениях tg x. Если же x > 1, то получим

2 + 4 cos² x ≥ tg² x. (1)

Выражаем tg² x через cos² x (равносильность при такой замене не нарушается):


т. е. cos² x ≥ ¼, или

cos x ≤ −½, cos x ≥ ½.

Нанесем решения этих неравенств на тригонометрический круг (рис. P.15.10). Приняв во внимание условие tg x > 1, получим решение системы.

Ответ.π/4 + πk < x ≤ π/3 + πk.

Глава 16

Трансцендентные уравнения

16.1. Из неравенства между средним арифметическим и средним геометрическим немедленно следует, что правая часть данного уравнения не меньше двух. Однако его левая часть не может стать больше двух. Поэтому остается лишь одна возможность:

Последнее равенство достигается лишь при x² = 1, т. е. при x = ±1. Подставляя эти значения в левую часть первого уравнения, получим

2 sin² ½ sin² 1/6 < 2.

Таким образом, исходное уравнение не имеет решений.

16.2. Так как 1/cos² x = tg² x + 1, то уравнение можно переписать в виде

22 tg² x + 2 · 2tg² x − 80 = 0,

откуда

2tg² x = 8, tg² x = 3, tg x = ±√3, x = n

π ±π/3

(второе уравнение 2tg² x = −10 не имеет решений).

Ответ.nπ ±π/3.

16.3. Так как в условие одновременно входят tg x и etg x, то мы можем воспользоваться неабсолютным тождеством ctg x1/tg x, не опасаясь нарушения равносильности. Получим уравнение

(tg x)sin x = (tg x)−cos x.

Если tg x < 0, то sin x и cos x − дробные числа, и обе части равенства теряют смысл. При tg x = 0 и sin x обращается в нуль, т. е. левая часть теряет смысл.

Если tg x > 0, но ≠ 1, то sin x = −cos x, откуда tg x < 0, что противоречит сделанному предположению. Остается tg x = 1, x = (4k + 1)π/4.

Ответ. (4k + 1)π/4.

16.4. Данное уравнение можно записать так:

sin (2x + 2x − 1) = ½,

откуда

2x + 2x − 1 = nπ + (−1)n π/6, или 2x = 2nπ/3 + (−1)n π/9.

Какое бы положительное число ни стояло в правой части, уравнение будет иметь решение.

Неравенство

2nπ/3 + (−1)n π/9 > 0

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература