Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Другими словами, если мы запишем уравнение семейства кривых как уравнение относительно а, то оно имеет решение при тех и только тех значениях x и y, при которых через точку плоскости с этими координатами проходит кривая семейства. Поэтому преобразуем исходное уравнение к виду

2a² + 2(x − 2)а + (x − 1)² − y = 0

и потребуем, чтобы дискриминант этого уравнения был неотрицателен

= −х² + 2 + 2y ≥ 0,

откуда

y ≥ x²/2 − 1.

Это необходимое и достаточное условие того, чтобы через точку (x; y) проходила по крайней мере одна кривая данного семейства.

Таким образом, через все точки (x; y), лежащие вне части плоскости, ограниченной параболой y = x²/2 − 1 (рис. P.17.13), кривые семейства не проходят. Через остальные точки кривые проходят.


Глава 18

Задачи на составление уравнений

18.1. Пусть x, y, zu — производительности первой, второй, третьей и четвертой труб соответственно. Примем объем бассейна за единицу. Тогда получим систему уравнений

Вычитая из первого уравнения поочередно второе и третье, найдем соответственно

z = 1/12

, x = 1/20.

Следовательно, общая производительность первой и третьей труб равна z + x = 2/15.

Ответ. 7,5 ч.

18.2. Пусть плечи весов равны l1 и l2 соответственно. Тогда в первый раз продавец отпустил  кг товара, а во второй раз он отпустил  кг. Таким образом, он отпустил покупателю товар массой

В силу неравенства между средним арифметическим и средним геометрическим

где равенство достигается лишь при l1 = l2. Таким образом, продавец отпустил больше товара, чем следовало.

18.3. Если все 500 марок расклеить по 20 на один лист, то двух альбомов не хватит для всех марок. Поэтому 2x < 25, т. е. x ≤ 12 (x − количество листов в альбоме и, следовательно, целое). Если же 500 марок расклеить по 23 на один лист, то в двух альбомах окажется по крайней мере один свободный лист. Это значит, что 2x − 1 ≥ 500/23, откуда 2x ≥ 22, x ≥ 11. Итак, либо x = 11, либо x = 12.

Если в альбоме 11 листов, то y школьника было 500 − 21 · 11 = 269 марок, которые нельзя разместить на 10 листах по 23 штуки на каждом. Второе число удовлетворяет условию задачи.

Ответ. 12 листов.

18.4. Поскольку понтоны находились в пути одинаковое время и в одинаковых условиях, то каждый из них проплыл одно и то же расстояние без буксира (см. второе указание на с. 203). Обозначим это расстояние через x. Каждый понтон находился в пути

Буксир в свою очередь, помимо пути в l

км вниз по течению, дважды преодолел расстояние l − 2x км: один раз вниз по течению, другой раз вверх по течению. На весь путь y него ушло

Приравниваем выражения (1) и (2) (буксир был в пути столько же времени, сколько каждый понтон) и решим уравнение.

Получим

Следовательно, второй понтон должен транспортироваться на расстояние в

а на всю перевозку уйдет

Ответ.

18.5. Пусть некто родился в  году, где x − число десятков, а y — число единиц. В 1901 году ему было 1901 −  лет.

Если y > 1, то, произведя вычитание, получим число , где 9 − x и 11 − y — цифры, образующие это число.

По условию сумма цифр числа  равна сумме цифр числа

1 + 8 + x + y = (9 − x) + (11 − y),    т. е. x + y = 5,5,

что невозможно, так как x и y  — целые.

Если y ≤ 1 (это значит, что либо y = 0, либо y = 1), после вычитания получим число , где 10 − x и 1 − y цифры, образующие это число. Когда x ≠ 0, это число состоит из двух цифр, а когда x = 0 — из трех, причем первые две цифры 1 и 0. Пусть x ≠ 0. Запишем сумму цифр для этого числа:

1 + 8 + x + y = (10 − x

) + (1 − y), т. е. x + y = 1.

Так как x ≠ 0, то y = 0, а x = 1. Это означает, что некто родился в 1810 году.

Пусть теперь  x = 0. Тогда получим уравнение

1 + 8 + y = 1 + (1 − y),

откуда  y = −3,5, что невозможно.

Ответ. В 1810 году.

18.6. Пусть одна часть имеет массу x карат, тогда другая — px карат. Цена этих частей равна ² и l(px)² соответственно, где l — коэффициент пропорциональности. Так как цена целого бриллианта была равна ², то получим уравнение

² = k[² + l(px)²], которое после упрощений примет вид

Проведем исследование.

По смыслу задачи k > 1, p > 0. Следовательно, подкоренное выражение будет неотрицательным, если k ≤ 2, т. е. 1 < k ≤ 2.

Так как

(мы знаем, что k > 1), то оба значения x

неотрицательны. Легко проверить, что px1 = x2.

Ответ.

18.7. Примем расстояние, которое туристам нужно пройти на моторной лодке, за единицу. Через x кг/ч обозначим расход горючего в течение часа работы двигателя в режиме, обеспечивающем собственную скорость лодки v1, а через y кг/ч — расход горючего при работе двигателя во втором режиме (v2). Весь путь лодка пройдет за  ч при работе двигателя в первом и во втором режимах соответственно. Так как расход горючего будет одинаковым, то

Если скорость течения реки будет равна ku, то из условия получим второе уравнение

Найдя из первого уравнения x, подставим во второе. Получим

откуда

Так как k > 1, то y > 0 только при v2 > v1 и ku < v1. Общий расход горючего равен

Ответ.

18.8. Обозначим через x, y, zs и t количество десятков порций стоимостью по 7, 9, 11, 13 и 15 p. за порцию соответственно.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература