Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Глава 17

Функции и их свойства

17.1. Запишем данную систему в виде

которую решим относительно f(2x + 1) и g(x − 1):

В уравнении (1) осуществим замену переменной: x − 1 = y, т. е. x = y + 1. Тогда

В уравнении (2) сделаем замену: 2x + 1 = z, т. е. x = z − 1/2. Тогда

Теперь мы знаем, что

Подставим эти значения в неравенство

4f(x) + g(x) ≤ 0,

которое требуется решить по условию задачи. Получим

или после простых преобразований:

x + 1 ≥ 0, т. е. x ≥ −1.

Ответ.x ≥ −1.

17.2. Сначала заметим, что

f(x) = x(x² − 6x + 9) = x(x − 3)².     (3)

Теперь подставим в (3) вместо x выражение f(x):

f(f(x)) = f(x)[f(x) − 3]² = x(x − 3)²(x³ − 6x² + 9x − 3)².    (4)

Уравнение f(f(x)) = 0 имеет корни x1

= 0, x2 = 3, а также корни уравнения

x³ − 6x² + 9x − 3 = 0.    (5)

При всех x ≤ 0 значения (6) отрицательны. При всех x ≥ 4 значения (6) положительны. Поэтому все корни (6) лежат в интервале (0, 4). Найдем корни производной функции (6):

y′ = 3x² − 12x + 9 = 3(х² − 4x + 3) = 3(x − 1)(x − 3).

При x = 1 значение y достигает максимума y = 1, а при x = 3 — минимума −3. Следовательно, функция (6) пересекает по одному разу ось Ox на каждом из интервалов (0, 1), (0, 3), (3, 4), т. е. имеет 3 корня. Таким образом, уравнение (2) имеет 5 различных корней.

Ответ. 5.

17.3. Из второго уравнения находим

z = π + 2πk, k — целое,

т. е.

z = 1 + 2k/5, k — целое.

Подставим в первое уравнение:

5 · 2x² − 2xy + 1 = (1 + 2k)3y² − 1. (7)

Если y — целое, то 3y² − 1 — целое при всех y ≠ 0. Рассмотрим вначале случай y = 0. Тогда уравнение (7) примет вид

5 · 3 · 2x² + 1 = 2k + 1,

и целых решений y него нет, поскольку при любых целых x слева — четное число, а справа — нечетное. Итак, y ≠ 0. Так как множителя 3 в левой части (7) нет, то это уравнение удовлетворяется только при y² = 1. При y = 1 получим

5 · 2x² − 2xy + 1 = 2k + 1, т. е. 5 · 2(x −1)² = 2k + 1.

Левая часть последнего уравнения будет четным числом при всех целых x ≠ 1. Правая часть — нечетное число. Поэтому есть единственная возможность x = 1, а k = 2.

Получим решение: x = 1, y = 1, z = 1.

При y

= −1 придем к уравнению

5 · 2(x + 1)² = 2k + 1,

которое удовлетворяется только при x = −1 и k = 2. Находим еще одно решение системы: x = −1, y = −1, z = 1.

Других решений y системы нет.

Ответ. (1, 1, 1), (−1, −1, 1).

17.4. Неравенство

|x + 2| ≤ x + 2

имеет решение x ≥ −2.

Обозначим

2x − 1 = y, sin πx/2 = z.   (8)

Тогда уравнение, входящее в систему, примет вид

(4у + y + 1/y)z + (1 − 2z²) = 3 + 2y²,

а после простых преобразований

2z² − (5у + 1/y)z + 2(1 + y²) = 0.   (9)

Дискриминант уравнения (9), квадратного относительно z, равен:

D = (5у + 1/y)² − 16(1 + y²) = 9у² − 6 + 1/y² = (3у1/y)².

Поэтому решениями уравнения (9) будут:

z1 = ¼[5у + 1/y − (3y1/y)] = ½(y

+ 1/y),   (10)

z2 = ¼[5у + 1/y + (3у1/y)] = 2y.

Из (8) следует, что y > 0. Из неравенства, связывающего среднее арифметическое и среднее геометрическое двух положительных чисел, при y > 0 вытекает неравенство: y + 1/y ≥ 2. Однако z = sin πx/2, т. е. |z| ≤ 1. Но

z1 = ½(y + 1/y).

Поэтому одновременно |z1| ≤ 1 и z1 ≥ 1, т. е. имеется единственная возможность z1 = 1, что достигается при y = 1, а следовательно, при x = 1. Подставим значение x = 1 в исходную систему и убедимся, что это ее решение.

Для z2 получим

sin πx/2 = 2x, где x ≥ −2.    (11)

При x > 0 решений уравнение (11) не имеет, поскольку тогда 2x > 1, а |sin πx/2| ≤ 1.

Значение x = 0 тоже решением не является, в чем убеждаемся непосредственной проверкой.

Когда −2 ≤ x < 0, решений тоже нет, так как при этих x значения 2положительны, а значения sin πx/2 ≤ 0.

Ответ.x = 1.

17.5. Первообразная F(x) для функции f

(x) = 6х² + 2x + 6 равна:

F(x) = 2x³ + x² + 6х + С,   (12)

где константа С будет определена. Соответственно

f′(x) = 12x + 2.    (13)

В точке касания x0 > 0,7 должны иметь место следующие соотношения:

т. е. получаем систему

Уравнение (15) после упрощений принимает вид

Из его двух корней x0 = ⅔ и x0 = 1 условию (16) удовлетворяет только второй. Подставляем x0 = 1 в уравнение (14) и находим, что С = 5. Окончательно

F(x) = 2x³ + x² + 6х + 5.

Остается сформировать данное в условии задачи неравенство

которое примет вид

Разложим числитель на множители

и воспользуемся методом интервалов (рис. P.17.5). Ограничение x > 0,7 относилось только к расположению точки касания графиков f(x) и F(x). Здесь его учитывать не нужно.

Ответ.x ∈ (−∞; −1/6) ∪ [½; +∞).

17.6. По условию разность xy такова, что может быть основанием логарифма. Поэтому возможна замена 1 = logxy (xy), а данное в условии неравенство равносильно такому:

Так как (xy) — основание логарифма, то либо 0 < xy < 1, либо xy > 1. Получим совокупность двух систем, которую затем несколько преобразуем, чтобы удобнее было перейти к графическим изображениям:

Последние два неравенства первой системы можно упростить, поскольку имеет место условие xy > 0. Получим

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература