Прежде всего математики сосредоточились на поиске четких формул для решения частных типов самых простых дифференциальных уравнений. И в некотором смысле это было неудачным шагом: как правило, формул для таких типов уравнений просто не существует. В итоге внимание оставалось прикованным скорее к уравнениям, которые можно решить с помощью формул, нежели к тем, которые точно описывают законы природы. Хороший пример – дифференциальное уравнение движения маятника, принимающее форму:
с соответствующей константой k
, где t – время, а θ – угол отклонения маятника (при θ = 0 он принимает вертикальное положение). Для этого уравнения не существует решения в виде классических функций (многочленных, экспоненциальных, тригонометрических, логарифмических и т. д.). Но есть решение с использованием эллиптической функции, найденное век спустя. Однако если предположить, что угол сколько угодно мал, и мы видим, что маятник совершает совсем небольшие колебания, sin θ становится практически равен θ, и чем меньше угол θ, тем точнее приближение. А значит, дифференциальное уравнение можно заменить таким:
в итоге получим формулу для решения:
θ = A
sin kt + B cos ktдля констант A
и B, определяющих начальное положение и угловую скорость маятника.Этот подход имеет ряд преимуществ: например, мы можем легко определить, что период колебаний маятника – время, необходимое на его полное движение, – равен 2π/k
. Главный недостаток с точки зрения математики в том, что решение делается неверным, когда θ становится достаточно большим (и здесь большим окажется даже угол в 20°, если мы хотим получить точный ответ). Тут уже возникает вопрос строгости: имеем ли мы тут случай, когда точное решение для приблизительного уравнения не противоречит приблизительному решению для точного? Ответ положительный, однако это удалось доказать только в 1900 г.Второе уравнение можно решить точно, потому что оно линейное – содержит только первую степень неизвестной θ и ее производную, а коэффициенты – константы. Функция, которая является прототипом решения для всех линейных уравнений, – экспонента y
= ex. Она удовлетворяет уравнению:
Таким образом, e
x – собственная производная. Это свойство – одна из причин того, что логарифмы именно по основанию е принимаются как натуральные. Соответственно производная натурального логарифма ln x равна 1/x, а интеграл от 1/x равен ln x. Любое линейное дифференциальное уравнение с постоянными коэффициентами может быть решено с использованием экспоненциальных и тригонометрических функций (последние, как мы уже видели, на самом деле являются экспоненциальными, только замаскированы).Типы дифференциальных уравнений
Различают два типа дифференциальных уравнений. Обыкновенные дифференциальные уравнения
(ОДУ) имеют дело с неизвестной функцией y от одной переменной х, а также с различными производными от y, такими как dy/dx или d2y/d2x. До сих пор приведенные здесь примеры дифференциальных уравнений относились к обыкновенным. Гораздо более сложной, но и более важной для математической физики является идея дифференциальных уравнений в частных производных (ДУЧП). Это уравнения, содержащие неизвестные функции от двух и более переменных, таких как f(x, y, t), где x и y – координаты на плоскости, а t – время. ДУЧП содержат эту функцию в выражении с частными производными относительно каждой переменной. Новое выражение используется для описания производных от одних переменных с учетом других, а все остальные остаются неизменными. Таким образом, ∂x/∂t показывает скорость изменения x во времени, а y остается константой. Это называется частной производной, отсюда и термин «дифференциальные уравнения в частных производных».Эйлер представил ДУЧП на суд ученых в 1734 г., а д’Аламбер опубликовал ряд работ по ним в 1743 г., но большинство ранних исследований проходило за закрытыми дверями. Первый большой прорыв случился в 1746 г., когда д’Аламбер вернулся к старой проблеме – колебаниям струны. Иоганн Бернулли обсуждал численный метод конечных элементов в 1727 г., учитывая колебания конечного числа точечных масс, расположенных равноудаленно друг от друга вдоль невесомой струны. Д’Аламбер рассматривает непрерывную струну с однородной плотностью, применяя вычисления Бернулли для n
масс и предполагая, что число n стремится к бесконечности. Таким образом, непрерывная струна рассматривалась как бесконечное множество бесконечно малых сегментов, соединенных вместе.Исходя из результатов Бернулли, основанных на открытом Ньютоном законе движения, и сделав некоторые упрощения (например, что размер колебаний небольшой), д’Аламбер пришел к формуле ДУЧП:
где y
= y (x, t) описывает форму струны в момент времени t как функцию горизонтальной координаты x. Здесь a – константа, определяемая по натяжению и плотности струны. В продолжение научного спора д’Аламбер доказал, что общее решение для ДУЧП имеет вид:y
(x, t) = f(x + at) + f(x – at),