где
Уравнение волны
Сегодня мы называем ДУЧП д’Аламбера волновым уравнением и интерпретируем его решение как суперпозицию симметрично расположенных волн, из которых одна движется со скоростью
Эйлер ознакомился с работой д’Аламбера и тут же постарался улучшить ее. В 1753 г. он показал, что без граничных условий общее решение будет выглядеть так:
где
В более ранних работах, опубликованных в 1749 г., он указывал, что (для простоты мы принимаем, что длина струны равна единице) простейшие нечетные периодические функции являются тригонометрическими:
и т. д. Эти функции представляют простые синусоидальные колебания с частотой 1, 2, 3, 4 и т. д. Эйлер утверждал, что общим решением здесь является наложение (суперпозиция) таких кривых. Базовая синусоида sin
Сравнение решений волнового уравнения, предложенных Эйлером и д’Аламбером, привело к фундаментальному кризису.
Д’Аламбер не признал возможности существования разрывных функций в интерпретации Эйлера. Более того, рассуждения Эйлера грешили одной нестыковкой, поскольку тригонометрические функции всегда непрерывны, и, следовательно, конечны наложения (суперпозиции) из них. Эйлер предпочел не углубляться в это противоречие между конечными и бесконечными суперпозициями. Впрочем, в те дни никто не был очень строгим в подобного рода вопросах и никто из ученых еще не ступил на этот сложный путь важности обоснования новых методов. Однако в итоге такое упущение привело к серьезным проблемам. На время разногласия утихли, пока новая работа Фурье не подлила масла в огонь.
Последовательность изображений волны, движущейся слева направо
Режимы колебаний струны
Музыка, свет, звук и электромагнетизм
Древним грекам было известно, что колебание струны может давать много разных музыкальных нот в зависимости от расположения узлов, или неподвижных точек. Для основной частоты неподвижными остаются только точки крепления. Если у струны есть узел посередине, получается нота на октаву выше, и чем больше таких узлов, тем выше частота ноты. Более высокие колебания называют обертонами.
Колебания скрипичной струны представляют собой
В 1759 г. Эйлер развил эти идеи, перейдя от струн к барабанам. И снова он вывел уравнение волны, описывающее продольные колебания барабанной мембраны во времени. Физической интерпретацией этого явления была закономерность, по которой ускорение отдельно взятой точки барабанной поверхности пропорционально среднему натяжению, полученному в результате совместного воздействия на этот участок соседних точек. Барабан отличается от струны не только количеством измерений (его поверхность – двумерная плоская мембрана), но и гораздо более интересными
Математики XVIII в. были способны решить уравнения для колебаний мембраны барабанов разной формы. И снова они обнаружили, что любое колебание может быть составлено из более простых, и это дает нам уникальный набор разных частот. Самым простым случаем считается прямоугольный барабан, простейшие колебания которого являются комбинацией синусоидальных волн в двух взаимно перпендикулярных направлениях. Более сложный случай – круговой барабан, который приводит к новым функциям – так называемым функциям Бесселя. Амплитуды этих волн всё еще представляют собой синусоиды, меняющиеся во времени, но их пространственная структура намного сложнее.