Читаем Укрощение бесконечности. История математики от первых чисел до теории хаоса полностью

где f периодична, причем период вдвое длиннее струны, и f – нечетная функция, т. е. f(–z) = –f(z). Эта формула удовлетворяет естественному граничному условию, что концы струны неподвижны.

Уравнение волны

Сегодня мы называем ДУЧП д’Аламбера волновым уравнением и интерпретируем его решение как суперпозицию симметрично расположенных волн, из которых одна движется со скоростью а

, а вторая со скоростью – а (они перемещаются в противоположных направлениях). Это стало одним из самых важных уравнений в математической физике, потому что в природе волны встречаются повсюду, причем самые разные.

Эйлер ознакомился с работой д’Аламбера и тут же постарался улучшить ее. В 1753 г. он показал, что без граничных условий общее решение будет выглядеть так:

y(x, t) = f(x + at) + g

(x – at),

где f и g периодичны, но не удовлетворяют никаким другим условиям. В частности, эти функции могут иметь различные формулы для разных областей x – особенность, которую Эйлер считал свойством функций, имеющих разрывы, хотя в современной терминологии они непрерывны, но имеют разрывную первую производную.

В более ранних работах, опубликованных в 1749 г., он указывал, что (для простоты мы принимаем, что длина струны равна единице) простейшие нечетные периодические функции являются тригонометрическими:

f(x) = sin x

, sin 2x, sin 3x, sin 4x

и т. д. Эти функции представляют простые синусоидальные колебания с частотой 1, 2, 3, 4 и т. д. Эйлер утверждал, что общим решением здесь является наложение (суперпозиция) таких кривых. Базовая синусоида sin x является основной модой колебаний, а остальные будут более высокими модами, – в итоге получается то, что мы теперь называем гармониками.

Сравнение решений волнового уравнения, предложенных Эйлером и д’Аламбером, привело к фундаментальному кризису.

Д’Аламбер не признал возможности существования разрывных функций в интерпретации Эйлера. Более того, рассуждения Эйлера грешили одной нестыковкой, поскольку тригонометрические функции всегда непрерывны, и, следовательно, конечны наложения (суперпозиции) из них. Эйлер предпочел не углубляться в это противоречие между конечными и бесконечными суперпозициями. Впрочем, в те дни никто не был очень строгим в подобного рода вопросах и никто из ученых еще не ступил на этот сложный путь важности обоснования новых методов. Однако в итоге такое упущение привело к серьезным проблемам. На время разногласия утихли, пока новая работа Фурье не подлила масла в огонь.


Последовательность изображений волны, движущейся слева направо


Режимы колебаний струны


Музыка, свет, звук и электромагнетизм

Древним грекам было известно, что колебание струны может давать много разных музыкальных нот в зависимости от расположения узлов, или неподвижных точек. Для основной частоты неподвижными остаются только точки крепления. Если у струны есть узел посередине, получается нота на октаву выше, и чем больше таких узлов, тем выше частота ноты. Более высокие колебания называют обертонами.

Колебания скрипичной струны представляют собой стоячие волны: форма струны в любой момент времени остается неизменной, за исключением того, что она либо растягивается, либо сжимается под прямым углом к своей длине. Наибольшее растяжение – это амплитуда волны, которая физически определяет тон ноты. Форма волны наглядно изображается в виде синусоиды, а их амплитуды соответствуют изменению синусоиды во времени.

В 1759 г. Эйлер развил эти идеи, перейдя от струн к барабанам. И снова он вывел уравнение волны, описывающее продольные колебания барабанной мембраны во времени. Физической интерпретацией этого явления была закономерность, по которой ускорение отдельно взятой точки барабанной поверхности пропорционально среднему натяжению, полученному в результате совместного воздействия на этот участок соседних точек. Барабан отличается от струны не только количеством измерений (его поверхность – двумерная плоская мембрана), но и гораздо более интересными границами. Собственно, они здесь вообще играют решающую роль. Границей поверхности барабана может быть любая замкнутая кривая, и ключевым условием является ее фиксированность. Вся остальная поверхность барабана может двигаться, однако его обод надежно закреплен.

Математики XVIII в. были способны решить уравнения для колебаний мембраны барабанов разной формы. И снова они обнаружили, что любое колебание может быть составлено из более простых, и это дает нам уникальный набор разных частот. Самым простым случаем считается прямоугольный барабан, простейшие колебания которого являются комбинацией синусоидальных волн в двух взаимно перпендикулярных направлениях. Более сложный случай – круговой барабан, который приводит к новым функциям – так называемым функциям Бесселя. Амплитуды этих волн всё еще представляют собой синусоиды, меняющиеся во времени, но их пространственная структура намного сложнее.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Как работает мозг
Как работает мозг

Стивен Пинкер, выдающийся канадско-американский ученый, специализирующийся в экспериментальной психологии и когнитивных науках, рассматривает человеческое мышление с точки зрения эволюционной психологии и вычислительной теории сознания. Что делает нас рациональным? А иррациональным? Что нас злит, радует, отвращает, притягивает, вдохновляет? Мозг как компьютер или компьютер как мозг? Мораль, религия, разум - как человек в этом разбирается? Автор предлагает ответы на эти и многие другие вопросы работы нашего мышления, иллюстрируя их научными экспериментами, философскими задачами и примерами из повседневной жизни.Книга написана в легкой и доступной форме и предназначена для психологов, антропологов, специалистов в области искусственного интеллекта, а также всех, интересующихся данными науками.

Стивен Пинкер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература