В последнем из них 37 знаков (а сумма всех его собственных делителей равна самому этому числу!).
В десятом числе 54 знака, а в одиннадцатом – 65, и заканчивается оно цифрами 8128, то есть в точности четвертым совершенным числом. Кстати говоря, найдены совершенные числа с миллионом (!) знаков. Не стесняйтесь – выдвигайте свои гипотезы.
Докажите, что любое
6 = 1 + 2 + 3.
28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 1³ + 3³.
496 = 1 + 2 + 3 + 4 + … + 31 = 1³ + 3³ + 5³ + 7³.
8128 = 1 + 2 + 3 + 4 + … + 127 = 1³ + 3³ + 5³ + … + 15³.
Более того, французский математик Эдуард Люка (1842–1891) доказал даже, что любое
Пока что мы видели только семь совершенных чисел, и все они четные. Естественно, хочется спросить: а бывают ли нечетные совершенные числа?
В конце XIX в. британский математик Джеймс Сильвестр писал, что открытие нечетного совершенного числа было бы настоящим чудом. Даже теперь многие математики склонны полагать, что ответ на этот вопрос должен быть отрицательным. Тем не менее доказать это пока что никто не смог. Вот вам еще одна «открытая проблема» – и еще одна возможность добиться славы и успеха!
Нет ответа и на другой интересный вопрос: бесконечно ли множество совершенных чисел? Можно ли продолжать находить совершенные числа, как бы далеко мы ни продвигались по множеству натуральных чисел? Или же где-то существует самое большое совершенное число?
Эта задача еще не решена и тесно связана с числами Мерсенна, к которым мы еще вернемся.
Сколько весит число? Числа совершенные, «толстые» и «тонкие»
Раз уж мы живем в эпоху диет, можно сказать, что натуральные числа делятся на три категории: совершенные, «толстые» и «тонкие». У «толстого» числа сумма собственных делителей больше самого числа, а сумма собственных делителей «тонкого» числа (вы, наверное, уже догадались…) меньше самого этого числа[11]
. Например, 12 – число упитанное, потому что сумма его делителей (1, 2, 3, 4 и 6) равна 16. А вот 10 – число худощавое, так как 1 + 2 + 5 = 8.А как обстоит дело с женскими числами? То есть нечетными? Бывает ли и у них лишний вес? Существуют ли такие нечетные числа, суммы собственных делителей которых больше самих этих чисел? Если немного поэкспериментировать, может показаться, что сложение собственных делителей нечетного числа всегда дает значение,
Мы еще вернемся в этой книге к теме совершенных чисел.
Интересные и скучные люди, интересные и скучные числа
Попытки создания «окончательных» списков иногда приводят к возникновению парадоксов следующего типа: из самого определения немедленно следует, что объект, задаваемый этим определением, должен быть исключен из списка. Что это значит?
Представим себе, что мы составляем два списка. Один из них – это список имен
Вот как выглядят верхние части обоих списков.
Интересные люди:
Пифагор, Леонардо да Винчи, Клеопатра, Моцарт, Эйнштейн, Мэрилин Монро, Сократ, Мессалина, Байрон, Наполеон, Будда, Жанна д’Арк, Александр Македонский…Неинтересные люди:
Реджинальд Зевокк, Брунгильда Дремотная, Якоб Снотвор, Владимир Сиестин, Билл Занудинг, Найлз Коматоз, Бернард Нуичтович, Карл Спячкин, Гарри Тоскливер, Тим Тупп…Однако не все так просто. Вот, например, Реджинальд Зевокк. Если верить нашему списку, он
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы