В 1902 г. Фреге собирался опубликовать второй том своей монументальной работы под названием «Основные законы арифметики» (Grundgesetze der Arithmetik), в которой он показывал, как можно воссоздать правильную арифметику исходя из заложенного Кантором основания теории множеств и используя только наивное определение множества по Кантору. Но 16 июня Фреге почувствовал, что весь его труд грозит развалиться на части: он получил от Бертрана Рассела письмо, в котором тот изложил сформулированный им парадокс, ставший с тех пор чрезвычайно знаменитым. Он известен
Брить или не брить – парадокс Рассела
Парадокс Рассела существует во многих вариантах, но наиболее известен в формулировке так называемого «парадокса брадобрея».
В маленькой удаленной английской деревушке жил-был Эдвард, профессиональный брадобрей, известный своим крайним педантизмом. Несколько лет назад, когда он только открыл свою парикмахерскую под вывеской «Эдвард Руки-ножницы», он провозгласил следующее правило: он будет брить
В первый день все шло хорошо. В деревне были те, кто брился самостоятельно, и те, кто приходил к Эдварду ради того гладкого бритья, на которое были способны только его искусные руки. На второй день Эдвард начал замечать на своих щеках и подбородке пробивающуюся щетину, которая его вовсе не красила. Однако за мгновение до того, как он взялся за бритву, дотошный брадобрей осознал, что правило, которое он же сам и ввел, поставило его в затруднительное положение.
В соответствии с этим правилом он должен был брить только тех жителей деревни, которые не брились сами. Можно ли ему побрить самого себя? Брить или не брить? Вот в чем вопрос.
Тщательно обдумайте то, что тут происходит. Если он побреется, то нарушит свое собственное правило, потому что тем самым побреет человека, который бреется самостоятельно; но, если он не побреется, то станет жителем деревни, не бреющимся самостоятельно, а такого человека он должен побрить.
Парадокс Рассела порождается принципом так называемого «порочного круга». Из этого принципа следует, что множеству лучше не содержать элементов, которые могут быть описаны при помощи определения самого этого множества (если только вы не хотите попасть в такую парадоксальную ситуацию).
Интереснейший анализ этого парадокса приводится в книге Рэймонда Смаллиана «Алиса в стране смекалки» (1982)[43]
. Там этот парадокс объясняет Алисе Шалтай-Болтай. Смаллиан приходит к следующему выводу: парадокс брадобрея эквивалентен утверждению «Я знаю человека низкорослого и в то же время высокого».Вот другой вариант парадокса Рассела. Библиотекарь решает составить два каталога своей библиотеки: один из них желтый и называется «Желтый каталог книг, в которых упоминаются они сами», а второй – «Синий каталог книг, в которых не упоминаются они сами».
Библиотекарь рассматривает одну за другой все книги библиотеки и вносит их названия либо в желтый каталог, либо в синий. Последний получается очень большим, а первый – весьма тонким, поскольку в большинстве книг они сами не упоминаются. Наконец библиотекарь доходит до двух последних книг, которые нужно каталогизировать: это сами желтый и синий каталоги.
Желтый каталог можно внести в него самого (потому что тогда в нем будет упоминаться он сам, так что все будет в порядке). Но что, спрашивается, делать с синим каталогом, в котором должны быть перечислены книги,
Два типа множеств
Вернемся к нашей теме. Есть два типа множеств. Множества первого типа называют обычными множествами: это множества, не содержащие в качестве элемента самих себя. Например, к этому типу относится
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы