Все были бы убеждены, что он генетически запрограммирован прыгать выше, чем все остальные. Никто не поверил бы, если бы он заявил: «Я ни в чем не превосхожу остальных биологически, и, кстати, мои спортивные качества не позволяли мне соперничать с другими, пока я не открыл новый метод».
Он мог бы написать книгу про свою технику – про то, как он воспринимал ее изнутри. Но как найти нужные слова? Когда один из его прыжков впервые засняли на пленку, Фосбери сам был удивлен, поскольку ему было сложно поверить, что увиденное на экране физически возможно и реально отражает то, что он делает.
Для человека, который никогда не видел, как это делается, научиться прыгать как Фосбери почти так же сложно, как самому придумать такую технику. Даже с подробными указаниями это невероятно сложно. «Подбросьте свое тело в воздух и откиньтесь на спину, головой вниз». Серьезно? А зачем все эти страницы предварительных рассуждений о траектории разбега и наклоне оси тела при приближении к планке? Зачем этот технический язык? Это все правда нужно?
Научиться какому-то действию – значит понять его за пределами слов. Почувствовать его в собственном теле. Осознать, что оно естественно и интуитивно.
Невидимые действия
Математика таинственна и сложна, потому что мы не можем увидеть, как с ней справляются другие. Можно увидеть то, что они пишут на доске или на листе бумаги, но нельзя увидеть то, что они предварительно проделали у себя в голове и что сделало их способными это подумать и написать.
Сама по себе математика проста, но мысленные действия, позволяющие овладеть ею, едва уловимы и парадоксальны. Они невидимы. Мы не можем воспроизвести то, что делают другие. У нас есть только слова, чтобы говорить об этом, но слова всегда упускают главное – то, что мы действительно чувствуем в своем теле.
Каждый должен воссоздать эти действия для себя, вслепую. Легко смеяться над учителями математики, но представьте себя на их месте.
Как бы вы стали объяснять кому-то, как завязывать шнурки, если этот человек никогда не видел ботинок, а ваш единственный канал общения – телефонный разговор? Вообразите эту сцену на несколько секунд, и вы увидите, насколько это трудно. От одной мысли перехватывает дыхание, это просто головокружительно сложно.
Эта повседневная реальность преподавания математики обуславливает конкретные сложности, с которыми сталкиваемся мы все. У профессиональных математиков есть кое-что общее с двоечниками – им знакомо чувство полной растерянности.
Этот опыт – часть их повседневности. Математик, присутствующий на научной конференции, знает, что он, вероятно, потеряет нить объяснений в первые же пять минут. Он знает, что дальше настаивать на разъяснениях бесполезно, это попросту болезненно и унизительно, потому что слова, которые он произнесет, ничего не будут для него значить.
Но профессиональный математик знает, что растерянность – нормальный этап процесса понимания. Он не обидится. А главное, не будет притворяться, будто что-то понимает. Даже не станет пытаться записывать. Просто перестанет слушать.
Если он действительно хочет понять, он будет действовать иначе.
Глава 6
Откажитесь от чтения
Я не коллекционер. Я не нахожу удовольствия в накоплении предметов. Это относится и к книгам тоже – я не раз избавлялся от значительной части своей библиотеки, дарил или перепродавал большинство книг. Я сохранил только те, к которым был особо привязан.
Моя математическая библиотека невелика – меньше ста книг. Мало у кого дома есть сто книг по математике, но у некоторых математиков их намного больше. Я скопил эти книги за время учебы и научной деятельности. Несколько экземпляров мне подарили, потому что я был знаком с авторами. Меньше ста за все эти годы – не так уж много.
Большую часть нужных мне книг я одалживал или читал в электронной форме. Я покупал только те, которые мне очень нравились, которые я хотел иметь у себя или находил действительно прекрасными.
Одна из моих любимых книг, одна из тех немногих, расставание с которыми разбило бы мне сердце, – «Категории для работающего математика» Саундерса Маклейна.
Каждый раз, как она попадается мне, я мысленно улыбаюсь. Эта книга написана в 1960-е годы и остается главным трудом по теории категорий – революционному способу видеть и осмыслять математические структуры, который Маклейн и Самуэль Эйленберг изобрели в 1940-е годы.
Я купил ее 20 лет назад, сразу после защиты диссертации, на первое жалованье доцента в Йельском университете. Немногие книги оставили во мне такой же след. Я нахожу ее великолепной, блистательной, вдохновляющей и на редкость хорошо написанной.
Я так ее и не прочитал.
Рафаэль
В начале работы над диссертацией, хотя я официально считался
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии