Читаем Путь к сути вещей: Как понять мир с помощью математики полностью

В детстве словари меня завораживали. Они обещали определить каждое слово с помощью других. Но возможно ли сдержать это обещание? Могут ли словари действительно послужить нам дверью в мир познания языка? Если хочешь научиться словам с нуля, с какой страницы начинать?

Если вы не знаете, что такое банан, словарь расскажет вам, что это «съедобный плод бананового дерева, продолговатой формы, вначале зеленый, затем желтый с черными точками при созревании, с мучнистой мякотью». Так, а что такое банановое дерево? Это «однодольное древовидное травянистое растение семейства банановых, плодом которого является банан».

Не то чтобы это было неверно, но особого интереса не вызывает. Определение странно извилисто и сложно, а главное, оно закольцовано: банан – это плод бананового дерева, которое плодоносит бананами. В таком случае лучше уж избавить себя от технической тарабарщины и прямо заявить, что банан – это банан, если в этом основной посыл.

Витиеватыми фразами не получится объяснить суть банана тому, кто не знает, что это такое. Чтобы по-настоящему отразить то, что мы думаем о бананах, самым простым и честным определением по-прежнему остается то, которое мы сообщаем детям: «Попробуй сам, это вкусно!»

Словарь полон закольцованных определений.

Что такое тепло? «Свойство чего-то теплого, ощущение, создаваемое горячим предметом». Что такое горячий? «С температурой выше нормы, повышенной температуры». Что такое температура? «Показатель, насколько тело или среда горячи или холодны».

Что такое истина? «Свойство того, что истинно». Истинный

? «Соответствующий истине».

С логической точки зрения словари – те еще финансовые пирамиды. Если бы мы реально рассчитывали на них, желая узнать, что такое банан, тепло или истина, мошенничество давно бы раскрылось.

Но мы поступаем не так. Наш подход не определяется логикой. Мы не учим слова по их определениям. Мы усваиваем язык через постепенное погружение, через последовательность разъяснений. Наш мозг обладает способностью видеть вещи до того, как мы сумеем их назвать, узнавать слова до того, как мы поймем их смысл, и постепенно соотносить слова с тем, что мы видим.

Мы начинаем с нуля – в буквальном смысле. Мы начинаем не со словарей. Мы начинаем с жизни, то есть с общего опыта, который объединяет нас с остальными.

Начать с нуля

Математические определения похожи на определения в словарях, только с одним нюансом – они действительно определяют.

В отличие от словарей, математические тексты не довольствуются установлением связей между уже существующими словами. Они не ограничиваются вещами, на которые можно указать пальцем и которые присутствуют в общем опыте.

Математическое определение – это не комментарий и не объяснение. Это точная инструкция по сборке нового мысленного образа и акт рождения нового слова, которым решено его назвать. (На практике существующее слово часто используется заново, получая новый смысл, который может не иметь прямого отношения к смыслу этого слова в повседневном языке.)

В этом плане математические определения обладают силой творения: они воплощают вещи в жизнь. Может показаться смешным, что мы говорим об этом так помпезно, но именно в этом и состоит задача: когда видишь вещи, которых другие не видят, передача знания о них подразумевает, что нужно сделать так, чтобы эти вещи стали существовать в голове других.

Подход очень прост: объяснить другим, как начать с вещей, которые они уже способны видеть, чтобы мысленно построить новые вещи и постепенно научиться видеть и их тоже.

Огромный коэффициент расширения

Теоретически все должны быть способны читать математические тексты. В отличие от словарей, они не содержат закольцованных определений. Не требуется никаких предварительных знаний, а при необходимости читателя отсылают к предыдущим данным, в которых он сможет найти определение слов, которых он еще не знает. Если инструкции ясны и все подробности в наличии, для понимания не должно быть никаких препятствий.

Однако на практике при написании математического текста с первых же строк возникает гигантская проблема: объяснить мысленный образ словами чудовищно сложно.

«Порой нужен огромный коэффициент расширения, чтобы перевести мой образ мыслей в то, что будет возможно сообщить кому-то другому», – замечает Тёрстон.

Результат зачастую неудобоварим. Когда Тёрстон говорит об «огромном коэффициенте расширения», это не значит, что текст будет в два или три раза длиннее, – это значит, что перевод в письменную форму того, что кажется нам очевидным, может быть в десять, сто или тысячу раз длиннее, чем изложение, которое мы сформулировали бы для себя мысленно. К тому же в стороне остается множество подробностей, которые мы никогда не осмелимся сформулировать.

Описанный Тёрстоном феномен ни в коей мере не прерогатива высокой науки. Он проявляется, как только мы пытаемся точно записать простейшие мысленные образы.

Лучше один раз увидеть, чем сто раз услышать – увы, это верно и для образов, существующих только у нас в голове.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Древний Египет
Древний Египет

Прикосновение к тайне, попытка разгадать неизведанное, увидеть и понять то, что не дано другим… Это всегда интересно, это захватывает дух и заставляет учащенно биться сердце. Особенно если тайна касается древнейшей цивилизации, коей и является Древний Египет. Откуда египтяне черпали свои поразительные знания и умения, некоторые из которых даже сейчас остаются недоступными? Как и зачем они строили свои знаменитые пирамиды? Что таит в себе таинственная полуулыбка Большого сфинкса и неужели наш мир обречен на гибель, если его загадка будет разгадана? Действительно ли всех, кто посягнул на тайну пирамиды Тутанхамона, будет преследовать неумолимое «проклятие фараонов»? Об этих и других знаменитых тайнах и загадках древнеегипетской цивилизации, о версиях, предположениях и реальных фактах, читатель узнает из этой книги.

Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс

Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии