В детстве словари меня завораживали. Они обещали определить каждое слово с помощью других. Но возможно ли сдержать это обещание? Могут ли словари действительно послужить нам дверью в мир познания языка? Если хочешь научиться словам с нуля, с какой страницы начинать?
Если вы не знаете, что такое
Не то чтобы это было неверно, но особого интереса не вызывает. Определение странно извилисто и сложно, а главное, оно закольцовано: банан – это плод бананового дерева, которое плодоносит бананами. В таком случае лучше уж избавить себя от технической тарабарщины и прямо заявить, что банан – это банан, если в этом основной посыл.
Витиеватыми фразами не получится объяснить суть банана тому, кто не знает, что это такое. Чтобы по-настоящему отразить то, что мы думаем о бананах, самым простым и честным определением по-прежнему остается то, которое мы сообщаем детям: «Попробуй сам, это вкусно!»
Словарь полон закольцованных определений.
Что такое
Что такое
С логической точки зрения словари – те еще финансовые пирамиды. Если бы мы реально рассчитывали на них, желая узнать, что такое банан, тепло или истина, мошенничество давно бы раскрылось.
Но мы поступаем не так. Наш подход не определяется логикой. Мы не учим слова по их определениям. Мы усваиваем язык через постепенное погружение, через последовательность разъяснений. Наш мозг обладает способностью видеть вещи до того, как мы сумеем их назвать, узнавать слова до того, как мы поймем их смысл, и постепенно соотносить слова с тем, что мы видим.
Мы начинаем с нуля – в буквальном смысле. Мы начинаем не со словарей. Мы начинаем с жизни, то есть с общего опыта, который объединяет нас с остальными.
Начать с нуля
Математические определения похожи на определения в словарях, только с одним нюансом – они действительно определяют.
В отличие от словарей, математические тексты не довольствуются установлением связей между уже существующими словами. Они не ограничиваются вещами, на которые можно указать пальцем и которые присутствуют в общем опыте.
Математическое определение – это не комментарий и не объяснение. Это точная инструкция по сборке нового мысленного образа и акт рождения нового слова, которым решено его назвать. (На практике существующее слово часто используется заново, получая новый смысл, который может не иметь прямого отношения к смыслу этого слова в повседневном языке.)
В этом плане математические определения обладают силой творения: они воплощают вещи в жизнь. Может показаться смешным, что мы говорим об этом так помпезно, но именно в этом и состоит задача: когда видишь вещи, которых другие не видят, передача знания о них подразумевает, что нужно сделать так, чтобы эти вещи стали существовать в голове других.
Подход очень прост: объяснить другим, как начать с вещей, которые они уже способны видеть, чтобы мысленно построить новые вещи и постепенно научиться видеть и их тоже.
Огромный коэффициент расширения
Теоретически все должны быть способны читать математические тексты. В отличие от словарей, они не содержат закольцованных определений. Не требуется никаких предварительных знаний, а при необходимости читателя отсылают к предыдущим данным, в которых он сможет найти определение слов, которых он еще не знает. Если инструкции ясны и все подробности в наличии, для понимания не должно быть никаких препятствий.
Однако на практике при написании математического текста с первых же строк возникает гигантская проблема: объяснить мысленный образ словами чудовищно сложно.
«Порой нужен огромный коэффициент расширения, чтобы перевести мой образ мыслей в то, что будет возможно сообщить кому-то другому», – замечает Тёрстон.
Результат зачастую неудобоварим. Когда Тёрстон говорит об «огромном коэффициенте расширения», это не значит, что текст будет в два или три раза длиннее, – это значит, что перевод в письменную форму того, что кажется нам очевидным, может быть в десять, сто или тысячу раз длиннее, чем изложение, которое мы сформулировали бы для себя мысленно. К тому же в стороне остается множество подробностей, которые мы никогда не осмелимся сформулировать.
Описанный Тёрстоном феномен ни в коей мере не прерогатива высокой науки. Он проявляется, как только мы пытаемся точно записать простейшие мысленные образы.
Лучше один раз увидеть, чем сто раз услышать – увы, это верно и для образов, существующих только у нас в голове.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии