Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Если в выражениях для x и y взять одинаковые знаки, например плюс, то получим систему

откуда следует

tg (α + π/3) = tg α или ctg (α + π/3) = ctg α,

что неверно при всех α.

Если взять разные знаки, то

sin (α + π/3) + sin (α − π/3) = 2 sin α cos π/3 = sin α,

cos (α + π/3) + cos (α − π/3) = 2 cos α cos π/3 = cos α,

т. е. каждое уравнение системы превращается в тождество.

Ответ.

где берутся или только верхние, или только нижние знаки.

Замечание. Найдя y = α + 2nπ ± π/3, можно было искать x с помощью подстановки. Однако это не избавило бы нас от необходимости делать проверку, так как в процессе решения уравнения возводились в квадрат.

13.38. Первое уравнение перепишем в виде

sin (xy) − cos (x + y) = 2a.

Из второго найдем

cos (x + y) = cos [2 arcsin (a + ½)] = 1 − 2 sin² [arcsin (a + ½)] = 1 − 2(a + ½)² = ½ − 2a² − 2a.

Следовательно,

sin (xy) = 2a + cos (x + y) = ½ − 2a² = 1 − 4a²/2.

Прежде чем решать систему

выясним, при каких а она имеет решение.

Первоначальная система накладывает на параметр а такие ограничения: |а| ≤ 1, | а + ½| ≤ 1, где первое — следствие того, что в левой части первого уравнения стоит произведение синуса и косинуса, а второе — следствие определения арксинуса.

Поскольку при преобразованиях исходной системы равносильность не нарушалась, то нет необходимости учитывать первоначальные ограничения, так как они будут содержаться в ограничениях системы (4):

Итак, если параметр а лежит на интервале −√3/2 ≤ а ≤ ½, то систему (4) можно переписать в виде

Решая эту систему, найдем x и y. Остается сделать проверку.

Ответ. При −√3/2а ≤ ½

13.39. Обозначим tg² x = u, tg² y = v. Тогда в левой части уравнения получим u² + v² + 2/uv. Это выражение не может стать меньше, чем 2uv + 2/uv, так как u² + v² ≥ 2uv. Выражение 2uv + 2/uv тоже легко оценить:

2[uv + 1/uv] ≥ 4,

причем равенство в первом и во втором случаях достигается лишь при u = v = 1.

Таким образом, сумма, стоящая в левой части равенства, не может стать меньше 4, в то время как правая часть этого равенства не может превзойти 4. Остается единственная возможность: обе части равенства одновременно равны 4. Получаем систему

Второму уравнению удовлетворяют значения x = ±π/4 + kπ, y = ±π/4 + nπ, где знаки берутся в произвольных сочетаниях. Однако первое уравнение будет удовлетворяться только в том случае, когда в выражениях для x и y взяты одинаковые знаки.

Ответ.

13.40. Способ 1. Умножив sin² x на sin² 3x + cos² 3x = 1 и сгруппировав члены, содержащие sin² 3x, получим

sin² x

cos² 3x + sin² 3x(sin² x − sin x + ¼) = 0,

или

sin² x cos² 3x + sin² 3x(sin x − ½)² = 0.

Последнее уравнение эквивалентно системе

Корни первого уравнения найти нетрудно:

x1nπ, x2 = π/6 + nπ/3.

Подставляя x1 во второе уравнение, убеждаемся, что оно удовлетворяется при этих значениях неизвестного. Подставляя во второе уравнение x2, получим

sin (π/2 + nπ) [sin (π/6 + nπ/3) − ½] = 0.

Так как первый сомножитель никогда не обращается в нуль, то последнее равенство можно записать так:

sin (π/6 + nπ/3) = sin π/6.

Воспользовавшись условием равенства синусов (если sin α = sin β, то либо α − β = 2kπ, либо α + β = (2k + 1)π), получим

π/3 + nπ/3 = (2k + 1)π, откуда n = 6k + 2,

и

nπ/3 = 2kπ, откуда n = 6k.

Таким образом,

x1 = nπ, x2 = π/6 + 2kπ, x3/6 + 2kπ.

Способ 2. Перепишем уравнение в виде

4 sin² x − 4 sin x sin² 3x + sin² 3x = 0,

т. е.

(2 sin x − sin² 3x)² + (sin² 3x − sin4 3x) = 0.

Так как оба слагаемых неотрицательны, то

Из второго уравнения получим: либо sin 3x = 0 и x = nπ/3, либо |sin 3x| = 1 и x = π/6 + nπ/3. Остается отобрать из этих решений те, которые удовлетворяют первому уравнению, что делается так же, как и в первом способе решения.

Способ 3. Рассмотрим данное уравнение как квадратное относительно sin x. Тогда

Чтобы уравнение имело действительные решения, необходимо и достаточно потребовать неотрицательности дискриминанта

sin² 3x (sin² 3x − 1) ≥ 0.

Выражение в скобках не может стать положительным. Следовательно, остается лишь две возможности: либо sin² 3x = 0, либо sin² 3x = 1. Если sin² 3x = 0, то, подставляя в первоначальное уравнение, получим sin² x = 0, т. е. x = πk. Если sin² 3x = 1, то придем к квадратному уравнению

sin² x − sin x + ¼ = 0, откуда sin x = ½.

Ответ.nπ; π

/6 + 2kπ; /6 + 2kπ.

13.41. Способ 1. Преобразовав данное уравнение к функциям от x + y/2 и x − y/2 и дополнив полученное таким образом выражение до полного квадрата, придем к уравнению вида

(2 cos x + y/2 − cos xy/2)² + sin² xy/2 = 0.

Это уравнение эквивалентно системе

Решая второе уравнение системы, найдем

xy/2 = nπ,

откуда xy = 2nπ, а x = y + 2nπ.

Подставляя найденное выражение для x в первое уравнение, получим

2 cos (y + nπ) − cos nπ = 0.

Число n может быть либо четным, либо нечетным. Если n = 2k, то уравнение примет вид 2 cos y − 1 = 0, откуда cos y = ½.

При n = 2k + 1 получим −2 cos y + 1 = 0, откуда снова cos y = ½. Таким образом,

y = 2πm ± π/3, а x = y + 2nπ = 2π(n + m) ± π/3.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература