Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

14.16. Значения x = πk, при которых sin x = 0, являются решениями неравенства при всех а > 0. На множестве остальных точек данное неравенство равносильно такому:

Так как

(сокращение на sin x правомерно, так как рассматриваются точки, в которых sin x ≠ 0), то приходим к неравенству:

(1 + 2cos 2x)² ≥ а².

Так как а > 0, то это неравенство распадается на два:

1 + 2cos 2x ≤ −а, 1 + 2cos 2x ≥ а,

т. е.

cos 2x ≤ −a + 1/2, cos 2x ≥ a − 1/2.

Первое имеет решения при − a + 1/2 ≥ −1, а второе — при a − 1/2 ≤ 1 или соответственно а ≤ 1 и а ≤ 3.

Найдем решение неравенства cos 2x ≤ −a + 1/2. Так как а > 0, то правая часть неравенства отрицательна и при а < 1 ему будут удовлетворять углы 2x, подвижные радиусы которых лежат в секторе, расположенном во второй и третьей четвертях симметрично горизонтальной оси (сделайте рисунок самостоятельно), т. е.

arccos (−a + 1/2) + 2πk ≤ 2x ≤ −arccos (−a + 1/2) + 2π + 2πk.

Так как arccos (−y) = π − arccos y, то

π − arccos a + 1/2 + 2πk ≤ 2x ≤ arccos a + 1/2 − π + 2π + 2πk.

Результат окончательных преобразований дан в ответе.

Ответ. При любом а > 0 y неравенства есть решения x = πk; при 0 < а ≤ 3 появляется вторая серия решений:

−½ arccos a − 1/2 + πk ≤ x ≤ ½ arccos a − 1/2 + πk;

при 0 < а ≤ 1 — третья серия:

−½ arccos a + 1/2 + π/2(2k + 1) ≤ x ≤ ½ arccos a + 1/2 + π/2(2k + 1).

14.17. Обозначим cos t = z и преобразуем условие задачи в неравенство

2z² + (2 cos x cos y)z + ½ cos² x cos² y + cos x − cos y > 0,

которое должно удовлетворяться при всех −1 ≤ z ≤ 1. Парабола, соответствующая трехчлену, стоящему в левой части неравенства, имеет абсциссу

z0 = −½ cos x cos y.

Следовательно, −1 < z0 < 1. Таким образом, условие задачи равносильно требованию, чтобы ордината этой вершины была положительна, что в свою очередь сводится к требованию отрицательности дискриминанта:

D = cos² x cos² y − cos² x cos² y − 2(cos x − cos y) < 0,

т. е.

cos x − cos y

> 0,    sin x + y/2 sin yx/2 > 0. (2)

Нанесем на график точки, в которых

 sin x + y/2 sin yx/2 = 0.

Это будет совокупность прямых

x + y = 2πk,   yx = 2πn,

параллельных биссектрисам первого и второго координатных углов (рис. P.14.17), пересекающих оси координат в точках, координаты которых кратны 2π. Сами эти прямые не удовлетворяют неравенству (2), однако они разбивают всю плоскость на квадраты, внутри каждого из которых произведение sin y + x/2 sin yx/2 сохраняет постоянный знак.

Рассмотрим квадрат ОАВС, примыкающий к началу координат снизу. Для всех внутренних точек этого квадрата

sin y + x/2 < 0 и sin yx/2 < 0,

т. е. неравенство (2) удовлетворяется. При переходе через границу квадрата в любой точке, кроме вершины, произойдет смена знака одного из сомножителей. При переходе же через вершину знак поменяется дважды. Таким образом, вся плоскость окажется разбитой на области, расположенные в шахматном порядке. Те области, в которых неравенство (2) удовлетворяется, заштрихованы.

Ответ.

Глава 15

Трансцендентные неравенства

15.1. Данное неравенство равносильно такому:

(logsin x 2)² < 2 logsin x 2 + 3.

Обозначив logsin x 2 = y, получим

y² − 2y − 3 < 0,

откуда

−1 < y < 3,   или   −1 < logsin x 2 < 3.

Последнее неравенство эквивалентно системе

Первое из неравенств системы можно переписать так: 0 < sin x < ½·

Ответ. 2

nπ < xπ/6 + 2nπ; /6 + 2nπ < x < π + 2nπ.

15.2. Пусть tg x = √y. Тогда sin² x = y/1 + y, и данное неравенство можно переписать в виде

(докажите, что последнее преобразование не нарушает равносильности). При 0 < y < 1 и y > 1 получаем различные системы:

Их можно объединить в одну:

Второе неравенство можно решить методом интервалов

т. е. y > 1.

Итак, tg² x > 1, причем tg x > 0.

Ответ. π/4 + kπ < x < π/2 + kπ.

15.3. Так как выражения, стоящие под знаками логарифмов, должны быть положительными, то указанный в условии интервал можно сузить: 0 < x < π/2. Данное неравенство равносильно системе

Второе неравенство перепишем в виде

sin² x + sin x − 1 < 0,

откуда

Учитывая, что в интервале 0 < x < π/2 должно быть sin x > 0, получим

Ответ.

15.4. Данное неравенство можно переписать так:

log2 cos 2x + log2 sin x + log2 cos x

+ log2 8 < 0,

т. е.

Первое неравенство можно переписать в виде

sin 4x < ½.

Два последних неравенства требуют, чтобы подвижный радиус угла x лежал в первой четверти, а неравенство cos 2x > 0 сужает эту область до первой половины первой четверти (на рис. P.15.4, а — заштрихованный сектор).

Остается выбрать решения неравенства sin 4x < ½, лежащие в этих промежутках. Все решения неравенства sin 4x < ½ можно записать в виде

/6 + 2nπ < 4xπ/6 + 2nπ,

т. е.

/24 + nπ/2 < x < π/24 + nπ/2

(рис. P.15.4, а). В интересующий нас интервал 0 < xπ/4 из этой серии частично попадут лишь два интервала: −/24 < x < 13π/24  (рис. P.15.4, б). Теперь нетрудно написать окончательный ответ.

Ответ. 2nπ < x < π/24 + 2nπ; /24 + 2nπ < xπ/4 + 2nπ.

15.5. Вместо данного неравенства можно написать 0 < |cos x + √3 sin x| < 1, что равносильно системе

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература