Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

ctg 2x = cos 2x/sin 2x = cos 2x/2sin x cos x,

а правую записать в виде

Обе части этого равенства перестают существовать одновременно, если либо cos x = 0, либо sin x = 0, следовательно, тождество 9 абсолютное.

Тождество 10 является неабсолютным, поскольку при x = π/2(2n + 1) левая часть равна нулю, а правая теряет смысл.

11—13. Первое из этих трех тождеств неабсолютное, второе и третье — абсолютные.

14—16. Первое и второе тождества неабсолютные, третье — абсолютное.

B самом деле, для первого область определения левой части: x > 0, y > 0; x < 0, y < 0, а область определения правой части: x ≠ 0; y ≠ 0. Для второго область определения левой части x ≠ 0, а область определения правой части x > 0.

Наконец, для третьего x ≠ 0 для обеих частей тождества.

17. Пусть x = а — корень данного уравнения. Тогда f(а) = φ(а). Поскольку ψ(x) существует при всех x, то ψ(а) — число; следовательно,

f(a) + ψ(а) = φ(а) + ψ(а). (1)

Таким образом, x = а — корень уравнения

f(x) + ψ(x) = φ(x) + ψ(x). (2)

Обратно: если x = а — корень (2), то имеет место равенство (1), а потому x

= а — корень уравнения f(x) = φ(x).

Вторую часть теоремы доказывает пример. B самом деле, достаточно рассмотреть два уравнения:

x − 1 = 0 и x − 1 + 1/x − 1 = 1/x − 1,

первое из которых имеет единственный корень x = 1, а второе вовсе не имеет корней, так как при x = 1 оно теряет смысл.

18. Доказательство аналогично 17. Даже пример можно взять тот же самый.

19—19а. Для доказательства достаточно заметить, что посторонними для данного уравнения могут быть те корни уравнения

f(x) = ψ(x),

для которых φ(x) либо не существует, либо обращается в нуль.

20. Если f(а) = φ(а), то [f(а)]² = [φ(а)]². Обратно: из второго равенства следует, что либо f(а) = φ(а), либо f(а) = −φ(а).

21. Система равносильна совокупности четырех систем:

22. Доказательство непосредственно следует из свойств пропорций.

9.1. При x < −2 получим

x + 2x + 2 − 3x − 6 = 0,

т. е. x = −2, что противоречит предположению. Таким образом, при x < −2 уравнение не имеет решений.

При −2 ≤ x ≤ −1 получим x = −2.

При −1 < x ≤ 0 уравнение обращается в ложное числовое равенство 4 = 0. На этом интервале нет решений.

Наконец, при x > 0 получаем x = −2, что снова противоречит ограничению.

Ответ.x

= −2.

9.2. Пусть x² = y. Тогда

|y − 9| + |y − 4| = 5.

Точки y = 4 и y = 9 разбивают числовую ось на три интервала.

Если y < 4, уравнение примет вид

9 − y + 4 − y = 5,

откуда y = 4. Это значение не принадлежит выбранному интервалу.

Если 4 ≤ y ≤ 9, то знаки абсолютной величины следует раскрыть так:

9 − y + y − 4 = 5, т. е. 5 = 5.

Так как уравнение обратилось в верное числовое равенство, то все значения y из интервала 4 ≤ y ≤ 8 являются решениями.

При y > 9 получим

y − 9 + y − 4 = 5,

т. е. y = 9. Здесь снова нет решений. Вспоминая, что y = x², запишем

4 ≤ x² ≤ 9, или 2 ≤ |x| ≤ 3.

Ответ. −3 ≤ x ≤ −2; 2 ≤ x ≤ 3.

9.3. Способ 1. Дополним стоящую слева сумму квадратов до полного квадрата:

(x3x/3 + x)² + 6x²/3 + x − 7 = 0,

т. е.

(x²/3 + x)² + 6x²/3 + x − 7 = 0,

откуда получаем совокупность уравнений:

x²/3 + x = −7, x²/3 + x = 1.

Действительных решений y этой совокупности уравнений нет.

Способ 2. Введем новое неизвестное:

3x/3 + x = u

, или 3x = 3u + xu.

Получим систему

Вычитая из первого уравнения удвоенное второе, придем к уравнению относительно xu

(xu)² + 6(xu) − 7 = 0, откуда следует совокупность двух уравнений:

x − u = −7, x − u = 1.

Решая каждое из этих уравнений, убедимся, что действительных корней нет.

Ответ. Решений нет.

9.4. Возведем данное уравнение в куб:

Стоящий в скобках в левой части уравнения двучлен заменим правой частью данного уравнения и приведем подобные члены:

Такая замена может привести к появлению посторонних корней. B самом деле, при возведении а + b = с в куб мы получаем равенство, справедливое при всех тех же значениях а, b и с, что и данное равенство. После замены же мы получим

а³ + b³ + 3аbс = с³.

Это равенство удовлетворяется при а = b = 1, с = −1, в то время как исходное равенство а + b = с при этих значениях букв ложно. Следовательно, мы должны завершить решение проверкой.

Возведем последнее иррациональное уравнение в куб. После сокращения получим

4х(2x − 3)(x − 1) = 9(x − 1)³.

Один корень этого уравнения x1 = 1; остается квадратное уравнение

x² − 6х + 9 = 0, x2,3 = 3.

Сделав проверку, убеждаемся, что найденные корни подходят.

Ответ.x

1 = 1; x2,3 = 3.

9.5. Пусть  Придем к системе

Это — симметрическая система, ее обычно решают подстановкой: и + V = в, ии = _. Поэтому преобразуем левую часть первого уравнения:

u4 + v4 = (u² + v²)² − 2u²v² = [(u + v)² − 2uv]² − 2u²v² = (64 − 2t)² − 2t² = 64² − 256t + 2t².  

Поскольку все это равно 706, получаем квадратное уравнение

t² − 128t + 1695 = 0,

откуда

t1 = 15, t2 = 113.

Остается решить совокупность двух систем:

Решая первую, найдем v1 = 3, v2 = 5, откуда x1 = 4, x2 = 548. Вторая не имеет действительных решений.

Проверкой убеждаемся, что найденные корни удовлетворяют исходному уравнению.

Ответ.x1 = 4; x2 = 548.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература