Не видя другого выхода, Омега решила обратиться за помощью к Сигме и Лямбде. До поступления на работу в гостиницу обе они прослушали спецкурсы по алгебраической топологии и функциональному анализу.
– Поселить их здесь совсем не трудно, – заявили сестры. – Когда мы проходили теорию множеств, эта задача была первым упражнением, которое нам задали. Вот как она решается. Числа 0 и 1 останутся там, где они живут сейчас, на первом и втором этажах. Все остальные числа переедут в номера, соответствующие их удвоенным значениям. То есть число 2 переселится в номер 4, число 3 – в номер 6, число 4 будет наслаждаться уютом номера 8 и так далее и так далее. Тогда все нечетные номера (3, 5, 7, 9…) освободятся, и у нас получится бесконечное количество незанятых номеров. Мы сможем разместить всех постояльцев.
Омега пришла в такой восторг от предложения изобретательных сестер, что повесила в холле гостиницы следующее объявление:
Так все и случилось. Когда приехали отрицательные числа, все удалось как нельзя лучше. Их расселили по номерам без каких бы то ни было затруднений, и гостиница стала выглядеть следующим образом:
Сейчас я объясню новое распределение номеров. 0 остался в номере 1, в котором он и жил до приезда отрицательных чисел. Все остальные положительные целые числа оказались в номерах, соответствующих их удвоенным значениям. Например, число 3 поселилось в номере 6, а число 111 – в номере 222.
Каждому отрицательному числу достался номер, соответствующий значению постояльца, умноженному на (–2) плюс 1. Таким образом, число –1 оказалось в номере 3, а число –17 – в номере (–17) × (–2) + 1 = 35.
Следующая неделя была спокойной и для гостиницы, и для ее постояльцев.
Когда отрицательные числа выехали из гостиницы, 0 решил уехать вместе с ними. После их отъезда Омега, к удивлению своему, обнаружила, что натуральные числа, некогда полностью занимавшие гостиницу, теперь заполняют только половину ее: занятыми остались только четные номера. Собственно говоря, теперь она могла сократить расходы, уволив Сигму, которая отвечала за обслуживание нечетных номеров, оказавшихся теперь совершенно пустыми. Правда, Сигма помогла ей решить проблему с размещением отрицательных чисел, не говоря уже о том, что Омеге казалось неправильным разлучать сестер. Однако факт оставался фактом: так или иначе, хотя в гостинице оставалось точно такое же количество постояльцев, которое раньше занимало ее полностью, ее заполненность упала до 50 процентов!
«Тут происходит что-то странное, – подумала Омега. – Что же случится, – задумалась она, постепенно начиная беспокоиться, – если число 1 переселится в номер 10, число 2 – в номер 20, число 3 – в номер 30 и так далее? Заполненность гостиницы упадет до 10 процентов, хотя из нее не выедет ни один из постоянных жильцов! Все натуральные числа по-прежнему будут на месте, и тем не менее уровень заполненности будет таким низким, что меня, того и гляди, уволят!»
Все еще обдумывая эту ужасную мысль, она вспомнила, что через две недели в гостинице должна пройти важная конференция под названием «Положительная рациональность в эпоху рациональной положительности», и все ее участники – то есть все положительные рациональные числа – должны будут провести в гостинице три положительно рациональных дня.
«Мы без труда найдем место для всех, – сказала себе Омега. – Гостиница стоит полупустой, и в ней имеется бесконечное количество свободных номеров».
Однако спокойствие Омеги было недолгим. Внезапно на нее нахлынули тревожные мысли. Омега осознала, что рациональные числа со знаменателем 2 могут полностью занять гостиницу, если дробь 1/2 поселится в номере 1, дробь 2/2 – в номере 2, дробь 3/2 – в номере 3 и так далее. Но в то же время точно таким же образом могут занять всю гостиницу и рациональные числа со знаменателями, равными 3, 4 или любым другим числам: 1/3 – в номере 1, 2/3 – в номере 2, 3/3 – в номере 3… Другими словами, на конференцию приедет бесконечное количество бесконечных множеств, и любое из них может занять всю гостиницу целиком. Не говоря уже о том, что даже до их прибытия гостиницу уже занимает бесконечное количество натуральных чисел (1, 2, 3, 4…).
Администратор попыталась рассмотреть другие возможные варианты: например поселить 1 в номере 1, 2 – в номере 1001, 3 – в номере 2001…, а затем предоставить числу 1/2 номер 2, числу 2/2 – номер 1002, числу 3/2 – номер 2003 и так далее. Однако она быстро поняла, что и этот план не дает решения проблемы (объясните, почему этот вариант не работает).
Александр Николаевич Петров , Маркус Чаун , Мелисса Вест , Тея Лав , Юлия Ганская
Любовное фэнтези, любовно-фантастические романы / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научная литература / Самиздат, сетевая литература / Любовно-фантастические романы